Transferase Inhibitor (transferase + inhibitor)

Distribution by Scientific Domains

Kinds of Transferase Inhibitor

  • farnesyl transferase inhibitor


  • Selected Abstracts


    Preparation of a Clinically Investigated Ras Farnesyl Transferase Inhibitor.

    CHEMINFORM, Issue 34 2003
    Peter E. Maligres
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]


    The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome

    MOLECULAR MICROBIOLOGY, Issue 5 2001
    Susan M. Poulsen
    The pleuromutilin antibiotic derivatives, tiamulin and valnemulin, inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria. The action and binding site of tiamulin and valnemulin was further characterized on Escherichia coli ribosomes. It was revealed that these drugs are strong inhibitors of peptidyl transferase and interact with domain V of 23S RNA, giving clear chemical footprints at nucleotides A2058,9, U2506 and U2584,5. Most of these nucleotides are highly conserved phylogenetically and functionally important, and all of them are at or near the peptidyl transferase centre and have been associated with binding of several antibiotics. Competitive footprinting shows that tiamulin and valnemulin can bind concurrently with the macrolide erythromycin but compete with the macrolide carbomycin, which is a peptidyl transferase inhibitor. We infer from these and previous results that tiamulin and valnemulin interact with the rRNA in the peptidyl transferase slot on the ribosomes in which they prevent the correct positioning of the CCA-ends of tRNAs for peptide transfer. [source]


    Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, function as inhibitors of cellular and molecular components involved in type I interferon production

    ARTHRITIS & RHEUMATISM, Issue 7 2010
    Hideki Amuro
    Objective Statins, which are used as cholesterol-lowering agents, have pleiotropic immunomodulatory properties. Although beneficial effects of statins have been reported in autoimmune diseases, the mechanisms of these immunomodulatory effects are still poorly understood. Type I interferons (IFNs) and plasmacytoid dendritic cells (PDCs) represent key molecular and cellular pathogenic components in autoimmune diseases such as systemic lupus erythematosus (SLE). Therefore, PDCs may be a specific target of statins in therapeutic strategies against SLE. This study was undertaken to investigate the immunomodulatory mechanisms of statins that target the IFN response in PDCs. Methods We isolated human blood PDCs by flow cytometry and examined the effects of simvastatin and pitavastatin on PDC activation, IFN, production, and intracellular signaling. Results Statins inhibited IFN, production profoundly and tumor necrosis factor , production modestly in human PDCs in response to Toll-like receptor ligands. The inhibitory effect on IFN, production was reversed by geranylgeranyl pyrophosphate and was mimicked by either geranylgeranyl transferase inhibitor or Rho kinase inhibitor, suggesting that statins exert their inhibitory actions through geranylgeranylated Rho inactivation. Statins inhibited the expression of phosphorylated p38 MAPK and Akt, and the inhibitory effect on the IFN response was through the prevention of nuclear translocation of IFN regulatory factor 7. In addition, statins had an inhibitory effect on both IFN, production by PDCs from SLE patients and SLE serum,induced IFN, production. Conclusion Our findings suggest a specific role of statins in controlling type I IFN production and a therapeutic potential in IFN-related autoimmune diseases such as SLE. [source]


    Statins suppress interleukin-6-induced monocyte chemo-attractant protein-1 by inhibiting Janus kinase/signal transducers and activators of transcription pathways in human vascular endothelial cells

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2010
    Michihisa Jougasaki
    Background and purpose:, The mechanisms of anti-inflammatory actions of statins, 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase inhibitors, remain unclear. We investigated the effects of statins on interleukin (IL)-6-induced monocyte chemo-attractant protein (MCP)-1 expression and monocyte chemotaxis. Experimental approach:, Cultures of human aortic endothelial cells (HAECs) were stimulated with IL-6 in the absence and presence of statins. Gene expression and protein secretion of MCP-1, phosphorylation of Janus kinase (JAK) and the signal transducers and activators of transcription (STAT) pathway, and human monocyte migration were examined. Key results:, IL-6 plus its soluble receptor sIL-6R (IL-6/sIL-6R) promoted THP-1 monocyte migration, and increased gene expression and protein secretion of MCP-1, more than IL-6 alone or sIL-6R alone. Various statins inhibited IL-6/sIL-6R-promoted monocyte migration and MCP-1 expression in HAECs. Co-incubation of mevalonate and geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate, reversed the inhibitory effects of statins on MCP-1 expression. Geranylgeranyl transferase inhibitor, but not farnesyl transferase inhibitor, suppressed IL-6/sIL-6R-stimulated MCP-1 expression. IL-6/sIL-6R rapidly phosphorylated JAK1, JAK2, TYK2, STAT1 and STAT3, which were inhibited by statins. Transfection of STAT3 small interfering RNA (siRNA), but not STAT1 siRNA, attenuated the ability of IL-6/sIL-6R to enhance THP-1 monocyte migration. In addition, statins blocked IL-6/sIL-6R-induced translocation of STAT3 to the nucleus. Conclusions and implications:, Statins suppressed IL-6/sIL-6R-induced monocyte chemotaxis and MCP-1 expression in HAECs by inhibiting JAK/STAT signalling cascades, explaining why statins have anti-inflammatory properties beyond cholesterol reduction. [source]


    A rapid and simple HPLC-UV method for the determination of inhibition characteristics of farnesyl transferase inhibitors

    BIOMEDICAL CHROMATOGRAPHY, Issue 2 2006
    Natalie M. G. M. Appels
    Abstract Ras proteins play an important role in the development of cancer. Farnesyl transferase inhibitors (FTIs) block the first obligatory post-translational step for activation, prenylation, of Ras proteins. To find new potent FTIs, rapid enzyme activity assays are required to reduce FTI development time. Most assays to date are based on radioactive labelled substrates. We developed a new, in vitro, farnesyl transferase assay based on gradient chromatography coupled to UV detection. Unfarnesylated and farnesylated H-Ras proteins were resolved on a C18 wide-pore HPLC column and their concentrations were determined with use of a calibration curve of unfarnesylated H-Ras. The assay was used to investigate inhibition characteristics of FTIs. The IC50 values of the FTIs L778,123 and SCH66336 were 4.2 nm and 78 µm, respectively. This assay could support the screening and development of FTIs to obtain rapid insights into their inhibitory properties. Copyright © 2005 John Wiley & Sons, Ltd. [source]