Transfer Resistance (transfer + resistance)

Distribution by Scientific Domains

Kinds of Transfer Resistance

  • charge transfer resistance
  • heat transfer resistance
  • mass transfer resistance

  • Selected Abstracts

    Tris(2,2,-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence Sensor Based on Platinized Carbon Nanotube,Zirconia,Nafion Composite Films

    ELECTROANALYSIS, Issue 12 2010
    Hyun Yoon
    Abstract Mesoporous films of platinized carbon nanotube,zirconia,Nafion composite have been used for the immobilization of tris(2,2,-bipyridyl)ruthenium (II) (Ru(bpy)32+) on an electrode surface to yield a solid-state electrogenerated chemiluminescence (ECL) sensor. The composite films of Pt,CNT,zirconia,Nafion exhibit much larger pore diameter (3.55,nm) than that of Nafion (2.82,nm) and thus leading to much larger ECL response for tripropylamine (TPA) because of the fast diffusion of the analyte within the films. Due to the conducting and electrocatalytic features of CNTs and Pt nanoparticles, their incorporation into the zirconia,Nafion composite films resulted in the decreased electron transfer resistance within the films. The present ECL sensor based on the Pt,CNT,zirconia,Nafion gave a linear response (R2=0.999) for TPA concentration from 3.0,nM to 1.0,mM with a remarkable detection limit (S/N=3) of 1.0,nM, which is much lower compared to those obtained with the ECL sensors based on other types of sol-gel ceramic,Nafion composite films such as silica,Nafion and titania,Nafion. [source]

    A New Indirect Electroanalytical Method to Monitor the Contamination of Natural Waters with 4-Nitrophenol Using Multiwall Carbon Nanotubes

    ELECTROANALYSIS, Issue 9 2009
    Cruz Moraes, Fernando
    Abstract The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedance spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700,mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12,,mol L,1) was lower than the value advised by EPA. A natural water sample from a dam located in São Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using the GC/MWCNT electrode, without any further purification step. The recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection. [source]

    Electrochemical Properties of Ordered Mesoporous Carbon Film Adsorbed onto a Self-Assembled Alkanethiol Monolayer on Gold Electrode

    ELECTROANALYSIS, Issue 2 2009
    Dan Zheng
    Abstract A stable ordered mesoporous carbon (OMC) film electrode was successfully constructed by adsorbing OMC onto a self-assembled monolayer (SAM) of C18H37SH chemisorbed on the Au electrode. Transmission electron microscopy (TEM), atomic force microscopy (AFM), and electrochemical methods were used to characterize the properties of the OMC film electrode. The adsorbed OMC can restore the heterogeneous electron transfer almost totally blocked by the alkanethiol monolayer. Nyquist plots show a sharply decrease of the charge transfer resistance (Rct) of the Fe(CN) couple at the OMC film electrode. Furthermore, the OMC film electrode is found to possess a significantly reduced interfacial capacitance and largely enhanced current response of hydrogen peroxide. This novel approach to the fabrication of stable OMC film electrode with excellent electrochemical properties is believed to be very attractive for electrochemical studies and electroanalytical applications. [source]

    Surface Resistance and Potentiometric Response of Polymeric Membranes Doped with Nonionic Surfactants

    ELECTROANALYSIS, Issue 19 2004
    Liya Muslinkina
    Abstract The influence of lipophilic, electrically neutral surfactants added to the membrane on the ion transfer resistance between an aqueous sample and a polymeric ion-selective membrane has been studied by electric impedance spectroscopy and potentiometry. An increase in the surface resistance and a shift of the apparently super-Nernstian response to lower sample ion activities has been observed when using the nonpolar bis(2-ethylhexyl) sebacate as plasticizer. [source]

    Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors

    ELECTROANALYSIS, Issue 11 2003
    Eugenii Katz
    Abstract Impedance spectroscopy is a rapidly developing electrochemical technique for the characterization of biomaterial-functionalized electrodes and biocatalytic transformations at electrode surfaces, and specifically for the transduction of biosensing events at electrodes or field-effect transistor devices. The immobilization of biomaterials, e.g., enzymes, antigens/antibodies or DNA on electrodes or semiconductor surfaces alters the capacitance and interfacial electron transfer resistance of the conductive or semiconductive electrodes. Impedance spectroscopy allows analysis of interfacial changes originating from biorecognition events at electrode surfaces. Kinetics and mechanisms of electron transfer processes corresponding to biocatalytic reactions occurring at modified electrodes can be also derived from Faradaic impedance spectroscopy. Different immunosensors that use impedance measurements for the transduction of antigen-antibody complex formation on electronic transducers were developed. Similarly, DNA biosensors using impedance measurements as readout signals were developed. Amplified detection of the analyte DNA using Faradaic impedance spectroscopy was accomplished by the coupling of functionalized liposomes or by the association of biocatalytic conjugates to the sensing interface providing biocatalyzed precipitation of an insoluble product on the electrodes. The amplified detections of viral DNA and single-base mismatches in DNA were accomplished by similar methods. The changes of interfacial features of gate surfaces of field-effect transistors (FET) upon the formation of antigen-antibody complexes or assembly of protein arrays were probed by impedance measurements and specifically by transconductance measurements. Impedance spectroscopy was also applied to characterize enzyme-based biosensors. The reconstitution of apo-enzymes on cofactor-functionalized electrodes and the formation of cofactor-enzyme affinity complexes on electrodes were probed by Faradaic impedance spectroscopy. Also biocatalyzed reactions occurring on electrode surfaces were analyzed by impedance spectroscopy. The theoretical background of the different methods and their practical applications in analytical procedures were outlined in this article. [source]

    Power Generation and Electrochemical Analysis of Biocathode Microbial Fuel Cell Using Graphite Fibre Brush as Cathode Material

    FUEL CELLS, Issue 5 2009
    S.-J. You
    Abstract To improve cathodic efficiency and sustainability of microbial fuel cell (MFC), graphite fibre brush (GFB) was examined as cathode material for power production in biocatalysed-cathode MFC. Following 133-h mixed culturing of electricity-producing bacteria, the MFC could generate a reproducible voltage of 0.4,V at external resistance (REX) of 100,,. Maximum volumetric power density of 68.4,W,m,3 was obtained at a current density of 178.6,A,m,3. Upon aerobic inoculation of electrochemically active bacteria, charge transfer resistance of the cathode was decreased from 188 to 17,, as indicated by electrochemical impedance spectroscopy (EIS) analysis. Comparing investigations of different cathode materials demonstrated that biocatalysed GFB had better performance in terms of half-cell polarisation, power and Coulombic efficiency (CE) over other tested materials. Additionally, pH deviation of electrolyte in anode and cathode was also observed. This study provides a demonstration of GFB used as biocathode material in MFC for more efficient and sustainable electricity recovery from organic substances. [source]

    Theoretical analysis on thermoelectric power generation with rectangular-fin elements and its applicability in micro systems

    Yutaka Oda
    Abstract A thermoelectric module, which consists of rectangular-fin elements and has a simple structure suitable for micro fabrication, was newly proposed for a micro- to milli-scale thermoelectric power generator. A unit model was introduced to examine the basic characteristics of thermoelectric power generation with rectangular-fin elements. Theoretical descriptions of the power density and conversion efficiency were given by solving one-dimensional heat and current flows inside the elements. Then, it was found that there exist optimum aspect ratios of the elements to achieve maximum power density and conversion efficiency. Power density becomes larger if the module is downsized with a similarity in shape, while conversion efficiency remains constant, i.e., smaller devices show better performance. Finally, comparative analysis with a standard pi-type module was conducted to emphasize the superiority of the proposed module in micro systems, when convective heat transfer resistance is taken into account. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(3): 224,244, 2006; Published online in Wiley InterScience ( DOI 10.1002/htj.20108 [source]

    Studies on pyrolysis of vegetable market wastes in presence of heat transfer resistance and deactivation

    Ruby Ray
    Abstract In the present investigation, the pyrolysis of predried vegetable market waste (dp=5.03 mm) has been studied using a cylindrical pyrolyser having diameter of 250 mm under both isothermal and non-isothermal conditions within the temperature range of 523,923 K with an intention to investigate the effective contribution of different heat transfer controlling regime namely intra-particle, external along with kinetically control regime on the overall global rate of pyrolysis. Thermogravimetric method of analysis was utilized to obtain experimental data for both isothermal and non-isothermal cases by coupling a digital balance with the pyrolyser. The pyrolysis of vegetable market waste has been observed to exhibit deactivated concentration independent pyrolysis kinetics, analogous to catalytic poisoning, throughout the entire range of study. The deactivation is of 1st order up to 723 K and follows the 3rd order in the temperature range of 723transfer resistance. While studying the pyrolysis process under non-isothermal conditions, a segregated ramp function of furnace temperature rise has been used. The transient profiles of the reactant and products have been simulated following the similar procedure followed under isothermal conditions. When experimental data and simulated values are compared, it is observed that unlike the case of isothermal condition, the global pyrolysis rate is controlled by intra-particle heat transfer resistance. Copyright © 2005 John Wiley & Sons, Ltd. [source]

    An advanced model to assess fouling and slagging in coal fired boilers

    Minghou Xu
    Abstract The assessment of the influence of fouling and slagging on the heat transfer in utility boilers has obtained significant interest both during boiler design and operation. This paper presents a strategy to investigate this influence by introducing heat resistance to represent fouling and slagging on furnace walls. The evaluation of this strategy was performed using the plant heat flux reading data together with a 3-D computational fluid dynamics code. The model considers the influence of the operating conditions to the incident heat fluxes and these are used to assess the heat transfer resistance from the measured absorbed heat fluxes. Copyright © 2002 John Wiley & Sons, Ltd. [source]

    Removal of H2S and volatile organic sulfur compounds by silicone membrane extraction

    I. Manconi
    Abstract BACKGROUND: This study explores an alternative process for the abatement and/or desulfurization of H2S and volatile organic sulfur compounds (VOSC) containing waste streams, which employs a silicone-based membrane to simultaneously remove H2S and VOSC. An extractive membrane reactor allows the selective withdrawal of VOSC and H2S simultaneously from the waste stream, while preventing direct contact between the waste stream and the absorbing solution and/or the biological treatment system. The influence of the sulfur compounds, membrane characteristics, extractant and pH was studied. RESULTS: Sulfide and the VOCS studied, i.e. methanethiol (MT), ethanethiol (ET) and dimethylsulfide (DMS) were removed from the synthetic wastewater using a silicone rubber membrane. Methanethiol showed the highest (8.72 × 10,6 m s,1) overall mass transfer coefficient (kov) and sulfide the lowest kov value (1.23 × 10,6 m s,1). Adsorption of the VOCS into the silicone membrane reduced the overall mass transfer coefficient. The kov when using Fe(III)EDTA, as extractant (5.81 × 10,7 m s,1) for sulfide extraction was one order of magnitude lower than with anaerobic water (2.54 × 10,6 m s,1). On the other hand, the sulfide removal efficiency with Fe(III)EDTA, was higher (84%) compared with anaerobic water (60%) as extractant. An additional mass transfer resistance was formed by elemental sulfur which remained attached to the membrane surface. CONCLUSIONS: Extraction of sulfide and VOCS from a synthetic wastewater solution through a silicone rubber membrane is a feasible process as alternative to the techniques developed to treat VOSC emissions. Optimizing the aqueous absorption liquid can increase the efficiency of extraction based processes. Copyright © 2008 Society of Chemical Industry [source]

    Design of mixed conducting ceramic membranes/reactors for the partial oxidation of methane to syngas

    AICHE JOURNAL, Issue 10 2009
    Xiaoyao Tan
    Abstract The performance of mixed conducting ceramic membrane reactors for the partial oxidation of methane (POM) to syngas has been analyzed through a two-dimensional mathematical model, in which the material balance, the heat balance and the momentum balance for both the shell and the tube phase are taken into account. The modeling results indicate that the membrane reactors have many advantages over the conventional fixed bed reactors such as the higher CO selectivity and yield, the lower heating point and the lower pressure drop as well. When the methane feed is converted completely into product in the membrane reactors, temperature flying can take place, which may be restrained by increasing the feed flow rate or by lowering the operation temperature. The reaction capacity of the membrane reactor is mainly determined by the oxygen permeation rate rather than by the POM reaction rate on the catalyst. In order to improve the membrane reactor performance, reduction of mass transfer resistance in the catalyst bed is necessary. Using the smaller membrane tubes is an effective way to achieve a higher reaction capacity, but the pressure drop is a severe problem to be faced. The methane feed velocity for the operation of mixed conducting membrane reactors should be carefully regulated so as to obtain the maximum syngas yield, which can be estimated from their oxygen permeability. The mathematical model and the kinetic parameters have been validated by comparing modeling results with the experimental data for the La0.6Sr0.4Co0.2Fe0.8O3-, (LSCF) membrane reactor. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]

    Explaining the enhanced performance of pulsed bioreactors by mechanistic modeling

    AICHE JOURNAL, Issue 5 2008
    Amaya Franco
    Abstract In this work, steady-state mass balance based models were applied to two UASB reactors and three UAF for a better understanding of the role of pulsation on the efficacy improvement. Models were defined taking into account the hydraulic behavior of each digester and the limiting mechanism of the overall process kinetics (mass transfer or biochemical reaction rate). The application of the model allows to identify that mass transfer was the controlling step in all the reactors, except for the nonpulsed UASB, where methanogenic activity controlled the reactor performance in the last operation steady states. Mass transfer coefficients were higher for pulsed reactors and, in general, a good agreement between those estimated by an empirical correlation and from the model was obtained. Damköhler number values supported that the external mass transfer resistance was not negligible with respect to the process kinetic and in addition, in most cases, it controls the overall process in the reactors. The relative importance of external and internal mass transfer rate was calculated through the Biot number. The values of this dimensionless module indicated that external transport was the main contributor to overall mass transfer resistance. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source]

    Impeding corrosion of sintered NdFeB magnets with titanium nitride coating

    A. Ali
    Abstract Sintered NdFeB magnets have poor corrosion resistance that renders them susceptible to corrosion in industrial and marine environments. This paper evaluates the properties of cathodic arc physical vapour deposited (CAPVD) titanium nitride coating for corrosion protection of sintered NdFeB permanent magnets. The performance of titanium nitride coating has been compared to the electrodeposited nickel,copper,nickel multilayer coating. The rates of coatings degradation in simulated marine environment were estimated with electrochemical impedance spectroscopy (EIS). Cyclic polarization was carried out to assess the pitting potential. The surface chemistry and coating morphologies were studied with scanning electron microscope (SEM). X-ray diffraction (XRD) was used for qualitative phase analyses of coatings and the substrate. It was figured out that the charge transfer resistance of CAPVD titanium nitride coating increased with exposure time. The negative rate of Rp-degradation for titanium nitride coating compared to the nickel,copper,nickel multilayer for equivalent exposure time is a unique and valuable result. Polarization results showed that ,pits re-passivation' of titanium nitride coating could be responsible for the extended corrosion protection of the NdFeB substrate. The magnetic properties remained comparable for both types of coatings. [source]

    Electrochemistry and XPS study of an imidazoline as corrosion inhibitor of mild steel in an acidic environment

    O. Olivares-Xometl
    Abstract The effect of 2-(2-heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)-ethylamine on the corrosion behavior of mild steel in aqueous hydrochloric acid was investigated using weight loss measurements, polarization scans, electrochemical impedance, and X-ray photoelectron spectroscopy (XPS). The inhibition efficiencies and coverage degrees increased with the concentration of inhibitor but decreased proportionally with temperature. It appears that the steric hindrance of the aliphatic chain on the imidazoline ring adsorption may affect inhibitor efficiency. Polarization curves showed that the oleic imidazoline (OI) acted essentially as a mixed type inhibitor, in which the blocking of active sites occurred. As a result of film formation, impedance spectra revealed a considerable increase in the charge transfer resistance as indicated by the second capacitive loop. XPS depth profile analysis observed the presence of nitrogen and carbon species on the inhibitor film, which were associated to the OI. [source]

    Exfoliation corrosion of aluminum alloy AA7075 examined by electrochemical impedance spectroscopy

    F.-H. Cao
    Abstract A typical aluminum alloy, AA7075, was immersed in the EXCO solution, and its corrosion properties during different immersion time were measured repetitively using electrochemical impedance spectroscopy technique (EIS). The EIS data a were simulated using equivalent circuit with ZView program. The results show that once the exfoliation occurs, the low frequency inductive loop in the Nyquist plot associated with the relaxation phenomenon of reaction intermediates disappears, and the Nyquist plane is mainly composed of two capacitive arcs in the high frequency range and low frequency range respectively. The former originates from the original corroded surface, while the latter from the newly formed interface by exfoliation corrosion (EXCO). With the increased immersion time, the high frequency capacitance arc decreases gradually, while the low frequency capacitance arc increases gradually. From the beginning of immersion up to 9 hours, charge transfer resistance gradually decreases, illustrating the acceleration of the corrosion rate, whereas the proton concentration decreases steeply, indicating the cathodic process is pre-dominant. Then the corrosion rate decreases gradually corresponding to the exhausting of proton ions. The results also show that the exfoliation corrosion is developed from pitting corrosion through intergranular corrosion to general corrosion at the end. [source]

    Modell und Programm CLIMT zur einfachen Ermittlung der Raumlufttemperatur und Raumluftfeuchte bei freier Klimatisierung

    BAUPHYSIK, Issue 3 2010
    Peter Häupl Prof. Dr.-Ing. habil. i. R., bis 30.
    Berechnungsverfahren; Feuchte; Wärme Abstract In der Planungspraxis besteht Bedarf nach einem vergleichsweise (siehe TRNSYS, ENERGY PLUS) einfachen und zuverlässigen Handwerkszeug zur Quantifizierung des Raumklimas. In diesem Beitrag wird ein praktikables Modell zur Ermittlung der Stundenwerte für die Raumlufttemperatur, die Empfindungstemperatur (Mitteltemperatur aus Raumluft- und Umschließungsflächentemperatur) und die Raumluftfeuchte in Abhängigkeit vom Außenklima (Außenlufttemperatur, Wärmestrahlung und relative Luftfeuchtigkeit der Außenluft), von den Gebäudeparametern (Geometrie, Wärmetransportwiderstände der Hüllkonstruktion, Wärme- und Feuchteabsorptionsvermögen der Bauteile), von der Lüftung und der Raumnutzung (innere Wärmequellen, innere Feuchtequellen und raumluftregulierte Heizung) bei freier Klimatisierung vorgestellt. Die Ergebnisse bilden den Quelltext für das nutzerfreundliche Windows-Programm CLIMT (CLimate-Indoor-Moisture-Temperature). Modell und Programm CLIMT werden durch einen Vergleich mit Rechenwerten nach TRNSYS und Messwerten in einem Testhaus validiert. Die Ergebnisse stimmen sehr gut überein. Das Programm CLIMT ist anwenderfreundlich und praxistauglich. Model and program CLIMT for a simplified determination of room temperature and relative humidity under arbitrary climate conditions. In planning practice there is a need for a comparably simple (cf. TRNSYS, ENERGY PLUS), reliable tool for quantifying an indoor climate. In this article a practicable model is put forward for determining the hourly values for natural conditioning of indoor air temperature, the perceived temperature (average of air and enclosing surface temperatures) and the interior air humidity in relation to the external climate (external air temperature, radiant heat and relative humidity of the outside air), the building parameters (geometry, heat transfer resistance of the shell structure, heat and moisture absorption properties of the components), the ventilation and the use of the space (interior heat sources, interior moisture sources and interior air-regulated heating). The results form the source text for the user-friendly Windows program CLIMT (CLimate-Indoor-Moisture-Temperature). The CLIMT model and program are validated in a test house by comparing values calculated using TRNSYS with measured values. The results agree very well. The CLIMT program is user-friendly and practically-oriented. [source]

    A novel biphasic extractive membrane bioreactor for minimization of membrane-attached biofilms

    Antonietta Splendiani
    Abstract Extractive membrane bioreactor (EMB) systems offer a means of biologically treating wastewaters, but, like other membrane processes, are constrained by their tendency to be fouled by membrane-attached biofilms (MABs). This study describes a new approach to eradicate MAB formation and accumulation in EMB systems. To this end, an innovative EMB configuration, the biphasic extractive membrane bioreactor (BEMB), has been developed. In BEMB systems, the two main constituents of the EMB process, membrane and bacteria, are kept separated and interact via a suitable recirculating solvent. Nineteen candidate solvents were tested to assess their suitability for BEMB application. Based on the results of the solvent selection, guidelines are provided to screen solvents for BEMB application. BEMB and EMB runs were carried out to demonstrate the effectiveness of BEMB technology in avoiding MAB accumulation and to compare BEMB and EMB performance. A synthetic wastewater containing monochlorobenzene (MCB) was used as a model system. Abiotic BEMB and EMB runs were carried out and used as comparative references for estimating the effect of MAB accumulation on system performance. MAB thickness in the BEMB systems was controlled at 18 ,m during 1 month of operation, whereas, in the EMB systems, MAB thickness reached 1250 ,m. Analysis of mass transport in EMB and BEMB systems revealed that the high affinity of the permeating molecules for the solvent may contribute to a reduction in shell-side mass transfer resistance. This reduction of shell-side mass transfer resistance and the absence of MAB accumulation led to overall mass transfer coefficients of about sevenfold greater (4.5 × 10,5 m s,1) in the BEMB system than in the EMB system (0.6 × 10,5 m s,1). © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 8,19, 2003. [source]

    Intrinsic Oxygen Use Kinetics of Transformed Plant Root Culture

    Patrick T. Asplund
    Root meristem oxygen uptake, root tip extension rate, and specific growth rate are assessed as a function of dissolved oxygen level for three transformed root cultures. The influence of hydrodynamic boundary layer was considered for all measurements to permit correlation of oxygen-dependent kinetics with the concentration of oxygen at the surface of the root meristem. Oxygen uptake rate is shown to be saturated at ambient conditions, and a saturation level of approximately 300 ,mole O2/(cm3 tissue·hr) was observed for all three of these morphologically diverse root types. In nearly all cases, the observation of a minimum oxygen pressure, below which respiration, extension, or root growth would not occur, could be accounted for as a boundary layer mass transfer resistance. The critical oxygen pressure below which respiration declines is below saturated ambient oxygen conditions. In contrast, critical oxygen pressures for root tip extension were much higher; extension was nearly linear for the two thicker root types (Hyoscyamus muticus, henbain; Solanum tuberosum, potato) above ambient oxygen levels. The performance of the thinnest root, Brassica juncea (Indian mustard) was consistent with reduced internal limitations for oxygen transport. Extension rates did not correlate with biomass accumulation. The fastest growing henbain culture (, = 0.44 day,1) displayed the slowest extension rate (0.16 mm/hr), and the slowest growing mustard culture (, = 0.22 day,1) had the fastest tip extension rate (0.3 mm/hr). This apparent paradox is explained in terms of root branching patterns, where the root branching ratio is shown to be dependent upon the oxygen-limited mersitem extension rate. The implications of these observations on the performance of root culture in bioreactors is discussed. [source]

    Hairy Root Culture in a Liquid-Dispersed Bioreactor: Characterization of Spatial Heterogeneity

    Gary R. C. Williams
    A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3,4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved reactor operating strategies and selection or development of root lines offering minimal resistance to liquid flow and low liquid retention characteristics are possible solutions to these problems. [source]

    Activated Carbon Adsorbent for the Aqueous Phase Adsorption of Amoxicillin in a Fixed Bed

    N. J. R. Ornelas
    Abstract Equilibrium constant and mass transfer parameters are needed for the study of amoxicillin separation in any process involving adsorption in fixed beds. In this work, the adsorption of amoxicillin and 6-aminopenillanic acid in aqueous solution on activated carbon were studied using static adsorption tests. The adsorption capacity was found to be strongly dependent on the pH of the aqueous phase. The adsorption constants, overall mass transfer coefficients, and axial dispersion coefficients for amoxicillin and 6-aminopenillanic acid were determined, by moment analysis, from a series of step tests in a fixed bed packed with activated carbon. The total bed voidage and axial dispersion coefficient were estimated from blue dextran pulse test data at different flow rates. The results show that adsorption intensity increased with increasing temperature. Furthermore, the increasing trend of HETP with velocity suggests that axial dispersion and mass transfer resistance control the column efficiency. [source]

    Effect of Modified Enzymatic Catalysis on the Extraction of Diosgenin from Dioscorea zingiberensis C.,H.

    Abstract Multi-enzymatic catalysis combined with acid hydrolysis is studied in order to enhance the efficiency of the enzymatic catalysis and reduce the mass transfer resistance from starch and cellulose in the extraction of diosgenin from Dioscorea zingiberensis C.,H. Wright. The cellulase is modified by polyethylene to increase its optimal reaction temperature and pH value. The modified cellulase shows better thermostability and resistance to alkali. The modified cellulase, , -amylase and , -glycosidase are used to construct the multi-enzyme and multi-enzyme catalysis is used as a pretreatment process. Compared to primary industrial techniques including acid hydrolysis, spontaneous fermentation and enzymatic catalysis, conventional techniques are optimized by using multi-enzymatic catalysis together with acid hydrolysis because of the higher reaction efficiency and lower levels of manipulation required. The purity of the product is more than 96,% with this technique, and the melting point is 205,207,°C. The diosgenin yield rate and the extraction rate reached are 2.43,% and 98,%, respectively. IR and 1H NMR spectroscopy were used to confirm the structure of the product. [source]

    Development and experimental validation of a conceptual model for biotrickling filtration of H2S

    Seongyup Kim
    A dynamic model that describes the behavior of high-performance hydrogen sulfide (H2S)-degrading biotrickling filters for odor control was developed. The model attempts to accurately describe pollutant mass transfer in the biotrickling filter, i.e., external mass transfer resistances, and both direct gas-biofilm and gas-liquid-biofilm mass transfer were considered. In order to calibrate the model, an innovative differential biotrickling filter was constructed in which the effect of air velocity on the removal of H2S could be studied. Model outputs were compared with experimental data to determine the sensitivity of the system to selected parameters. At low H2S concentration, diffusion of H2S within the biofilm, and biofilm thickness were the major governing factors among nine considered model parameters. At higher H2S concentrations and lower air flow rates, external mass transfer played a very important role. This new finding, confirmed experimentally, has important implications, as it proves that the performance limit of H2S degrading biotrickling filters has not yet been reached. [source]

    Polymer hydrogenation in pulsed flow systems with extrusion

    AICHE JOURNAL, Issue 4 2008
    Alan Bussard
    Abstract The hydrogenation of poly(styrene) over a Pd/Al2O3 catalyst was studied in reactors where pulsed flows are present due to both extrusion and forced pulsing. The reaction was investigated over a range of flow rates, polymer concentrations, and pulsing conditions. Observed activities were highly related to gas-to-liquid mass transfer rates predicted by a correlation for slug flow in catalyst monoliths. A reactor fed by a liquid-starved extruder is an attractive choice for hydrogenation at low polymer concentrations, where intrinsic reaction rates are approached. Higher polymer concentrations (10 wt %) lead to higher mass transfer resistances and a decrease in observed activity. But in this case forced pulsing has a greater effect on productivity; an optimum pulsing frequency was observed. Selectivity was higher and power input lower than in a stirred tank at comparable conditions. The optimal frequency is higher than those found in previous work on hydrogenations. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source]

    Kinetic limitations of a bioelectrochemical electrode using carbon nanotube-attached glucose oxidase for biofuel cells

    Xueyan Zhao
    Abstract Carbon nanotubes (CNTs) have been used for various bioelectrochemical applications, presumably for substantial improvement in performance. However, often only moderate results observed, with many governing factors have been considered and suggested yet without much systematic evaluation and verification. In this study, CNT-supported glucose oxidase (CNT,GOx) was examined in the presence of 1,4-benzoquinone (BQ). The intrinsic Michaelis parameters of the reaction catalyzed by CNT,GOx were found very close to those of native GOx. However, the Nafion entrapment of CNT,GOx for an electrode resulted in a much lower activity due to the limited availability of the embedded enzyme. Interestingly, kinetic studies revealed that the biofuel cell employing such an enzyme electrode only generated a power density equivalent to <40% of the reaction capability of the enzyme on electrode. It appeared to us that factors such as electron and proton transfer resistances can be more overwhelming than the heterogeneous reaction kinetics in limiting the power generation of such biofuel cells. Biotechnol. Bioeng. 2009; 104: 1068,1074. © 2009 Wiley Periodicals, Inc. [source]

    Vapor Condensation Heat Transfer in a Thermoplate Heat Exchanger

    J. Mitrovic
    Abstract The heat transfer and pressure drop in a thermoplate heat exchanger operating as a condenser have been investigated experimentally. In order to separate the heat transfer resistances in the condensation process, the single phase forced convection has been studied using distilled water and Marlotherm oil in the thermoplate and correlations developed for the Nusselt number and the friction factor. For the condensation experiments, an apparatus has been constructed comprising two identical condensers composed of the same thermoplate type as employed in the single phase experiments. Isopropanol is used as a test fluid at pressures below atmospheric pressure. The heat transfer resistances in the condensation experiments are separated and expressions for the condensation heat transfer and pressure drop are developed with the aid of the results obtained in the single phase studies. [source]

    Study of the Kinetics and Morphology of Gas Hydrate Formation


    Abstract The kinetics and morphology of ethane hydrate formation were studied in a batch type reactor at a temperature of ca. 270,280,K, over a pressure range of 8.83,16.67,bar. The results of the experiments revealed that the formation kinetics were dependant on pressure, temperature, degree of supercooling, and stirring rate. Regardless of the saturation state, the primary nucleation always took place in the bulk of the water and the phase transition was always initiated at the surface of the vortex (gas-water interface). The rate of hydrate formation was observed to increase with an increase in pressure. The effect of stirring rate on nucleation and growth was emphasized in great detail. The experiments were performed at various stirring rates of 110,190,rpm. Higher rates of formation of gas hydrate were recorded at faster stirring rates. The appearance of nuclei and their subsequent growth at the interface, for different stirring rates, was explained by the proposed conceptual model of mass transfer resistances. The patterns of gas consumption rates, with changing rpm, have been visualized as due to a critical level of gas molecules in the immediate vicinity of the growing hydrate particle. Nucleation and decomposition gave a cyclic hysteresis-like phenomena. It was also observed that a change in pressure had a much greater effect on the rate of decomposition than it did on the formation rate. Morphological studies revealed that the ethane hydrate resembles thread or is cotton-like in appearance. The rate of gas consumption during nucleation, with different rpm and pressures, and the percentage decomposition at different pressures, were explained precisely for ethane hydrate. [source]

    Reactor Modeling of Gas-Phase Polymerization of Ethylene

    A. Kiashemshaki
    Abstract A model is developed for evaluating the performance of industrial-scale gas-phase polyethylene production reactors. This model is able to predict the properties of the produced polymer for both linear low-density and high-density polyethylene grades. A pseudo-homogeneous state was assumed in the fluidized bed reactor based on negligible heat and mass transfer resistances between the bubble and emulsion phases. The nonideal flow pattern in the fluidized bed reactor was described by the tanks-in-series model based on the information obtained in the literature. The kinetic model used in this work allows to predict the properties of the produced polymer. The presented model was compared with the actual data in terms of melt index and density and it was shown that there is a good agreement between the actual and calculated properties of the polymer. New correlations were developed to predict the melt index and density of polyethylene based on the operating conditions of the reactor and composition of the reactants in feed. [source]

    Iridium Oxide Film-Enhanced Impedance Immunosensor for Rapid Detection of Carcinoembyronic Antigen

    Yan-Jun Ding
    Abstract A simple, rapid and sensitive impedance immunosensor based on iridium oxide (IrOx) thin film for the detection of carcinoembyronic antigen (CEA) in human sera has been proposed. Gold electrode was electrochemically modified with IrOx thin film and simultaneously functionalized with protein A (PA) to bind anti-CEA antibodies in an orientated way. It has been found that the antibody loading amount was dependent on the PA concentration and the deposition time of IrOx matrix. Under the optimized experimental conditions, the electron transfer resistances obtained were linearly related to the CEA concentration ranging from 36.2 to 460.0 ng/mL, with a detection limit of 28.0 ng/mL. Analytical results of clinical samples from cancer patients show that the proposed immunoassay is reasonably comparable with the chemiluminescence immunoassay (CLIA), indicating the feasibility of using the proposed method for CEA immunoassay in clinical laboratory. [source]