Transfer Parameters (transfer + parameter)

Distribution by Scientific Domains

Kinds of Transfer Parameters

  • mass transfer parameter


  • Selected Abstracts


    Impact of land use on the hydraulic properties of the topsoil in a small French catchment

    HYDROLOGICAL PROCESSES, Issue 17 2010
    E. Gonzalez-Sosa
    Abstract The hydraulic properties of the topsoil control the partition of rainfall into infiltration and runoff at the soil surface. They must be characterized for distributed hydrological modelling. This study presents the results of a field campaign documenting topsoil hydraulic properties in a small French suburban catchment (7 km2) located near Lyon, France. Two types of infiltration tests were performed: single ring infiltration tests under positive head and tension-disk infiltration using a mini-disk. Both categories were processed using the BEST,Beerkan Estimation of Soil Transfer parameters,method to derive parameters describing the retention and hydraulic conductivity curves. Dry bulk density and particle size data were also sampled. Almost all the topsoils were found to belong to the sandy loam soil class. No significant differences in hydraulic properties were found in terms of pedologic units, but the results showed a high impact of land use on these properties. The lowest dry bulk density values were obtained in forested soils with the highest organic matter content. Permanent pasture soils showed intermediate values, whereas the highest values were encountered in cultivated lands. For saturated hydraulic conductivity, the highest values were found in broad-leaved forests and small woods. The complementary use of tension-disk and positive head infiltration tests highlighted a sharp increase of hydraulic conductivity between near saturation and saturated conditions, attributed to macroporosity effect. The ratio of median saturated hydraulic conductivity to median hydraulic conductivity at a pressure of , 20 mm of water was about 50. The study suggests that soil texture, such as used in most pedo-transfer functions, might not be sufficient to properly map the variability of soil hydraulic properties. Land use information should be considered in the parameterizations of topsoil within hydrological models to better represent in situ conditions, as illustrated in the paper. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Object detection using straight line matching in ,-, space

    ELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 3 2010
    Taisei Okuzono
    Abstract The contours of many industrial parts contain straight lines and the positions of the lines are therefore useful information for object detection. This paper presents a matching technique for straight lines. The method consists of ,-matching, ,-matching, and pose estimation. Any lines in 2D space are represented with parameters , and , by the Hough transform. In order to find the corresponding lines in a model and a scene, the , and , values are evaluated in ,-matching and ,-matching. When an object is translated and rotated, the contour lines of the object are also transferred and the , values of the lines are merely shifted by the rotation angle in the ,-, space. Thus, the relative positions of the , values are invariant. In ,-matching, the corresponding lines of the model and the scene are selected so that the relative , values of the corresponding lines are nearly equal. In ,-matching, the corresponding lines are evaluated further by computing the deviations of their , values. Finally, the transfer parameters of the selected pairs are estimated in pose estimation. The experiments show that this technique is robust to rotation, occlusion, and scaling of the objects. We also discuss the computation time, in which the preprocess such as edge detection and the Hough transform takes much of the time. © 2010 Wiley Periodicals, Inc. Electron Comm Jpn, 93(3): 34,41, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecj.10176 [source]


    NEURAL NETWORK MODELING OF END-OVER-END THERMAL PROCESSING OF PARTICULATES IN VISCOUS FLUIDS

    JOURNAL OF FOOD PROCESS ENGINEERING, Issue 2010
    YANG MENG
    ABSTRACT Modeling of the heat transfer process in thermal processing is important for the process design and control. Artificial neural networks (ANNs) have been used in recent years in heat transfer modeling as a potential alternative to conventional dimensionless correlation approach and shown to be even better performers. In this study, ANN models were developed for apparent heat transfer coefficients associated with canned particulates in high viscous Newtonian and non-Newtonian fluids during end-over-end thermal processing in a pilot-scale rotary retort. A portion of experimental data obtained for the associated heat transfer coefficients were used for training while the rest were used for testing. The principal configuration parameters were the combination of learning rules and transfer functions, number of hidden layers, number of neurons in each hidden layer and number of learning runs. For the Newtonian fluids, the optimal conditions were two hidden layers, five neurons in each hidden layer, the delta learning rule, a sine transfer function and 40,000 learning runs, while for the non-Newtonian fluids, the optimal conditions were one hidden layer, six neurons in each hidden layer, the delta learning rule, a hyperbolic tangent transfer function and 50,000 learning runs. The prediction accuracies for the ANN models were much better compared with those from the dimensionless correlations. The trained network was found to predict responses with a mean relative error of 2.9,3.9% for the Newtonian fluids and 4.7,5.9% for the non-Newtonian fluids, which were 27,62% lower than those associated with the dimensionless correlations. Algebraic solutions were included, which could be used to predict the heat transfer coefficients without requiring an ANN. PRACTICAL APPLICATIONS The artificial neural network (ANN) model is a network of computational elements that was originally developed to mimic the function of the human brain. ANN models do not require the prior knowledge of the relationship between the input and output variables because they can discover the relationship through successive training. Moreover, ANN models can predict several output variables at the same time, which is difficult in general regression methods. ANN concepts have been successfully used in food processing for prediction, quality control and pattern recognition. ANN models have been used in recent years for heat transfer modeling as a potential alternative to conventional dimensionless correlation approach and shown to be even better performers. In this study, ANN models were successfully developed for the heat transfer parameters associated with canned particulate high viscous Newtonian and non-Newtonian fluids during an end-over-end rotation thermal processing. Optimized configuration parameters were obtained by choosing appropriate combinations of learning rule, transfer function, learning runs, hidden layers and number of neurons. The trained network was found to predict parameter responses with mean relative errors considerably lower than from dimensionless correlations. [source]


    A NUMERICAL APPROACH WITH VARIABLE TEMPERATURE BOUNDARY CONDITIONS TO DETERMINE THE EFFECTIVE HEAT TRANSFER COEFFICIENT VALUES DURING BAKING OF COOKIES

    JOURNAL OF FOOD PROCESS ENGINEERING, Issue 5 2006
    EREN DEMIRKOL
    ABSTRACT The increasing trade of ready-to-eat foods such as cookies highlights an interest in quality defects during baking. Heat (h and thermal diffusivity) and mass (mass transfer and diffusion coefficients) transfer parameters are significant parameters affecting the quality changes. Therefore, it is important to determine these parameters for modeling and process optimization studies. Among these, the h is important, revealing the relationship between the heating medium and product surface. As baking involves a simultaneous heat and mass transfer involving moisture diffusion and heat conduction inside and convective heat and mass transfer outside, a lumped system method may not be an accurate choice to determine the h value. Changes in the product volume and contact heating from bottom of the product also bring extra challenges to the determination of h. Therefore, the objective of this study was to use realistic approaches including simultaneous heat and mass transfer to determine the changes in h. The heffvalues for the bottom and top surface of the cookies were then determined, applying a numerical procedure where the surface temperature changes were the boundary conditions with evaporation on the surface. The hband ht values increased with baking temperature and varied with baking time. The results of this study showed that evaporative mass flux for the top surface, heat flux for the bottom surface and the product's volume changes were significant in the variation of h values. [source]


    Influence of temperature on mass transfer in an incomplete trapping supported liquid membrane extraction of triazole fungicides

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 7 2009
    Luke Chimuka
    Abstract The influence of temperature in a supported liquid membrane (SLM) extraction of triazole fungicides was investigated. The mass transfer parameters such as diffusion coefficient, flux and apparent viscosity were determined at temperatures ranging from 5 to 40°C. Increase in temperature led to an increase in diffusion coefficient and flux with a flowing acceptor solution. The apparent viscosity also decreased with an increase in temperature. However, the increase in mass transfer parameters did not result in an overall increase in extraction efficiency with a stagnant or circulation acceptor phase. Stripping of the analytes from the membrane into the acceptor phase as well as the configuration of the extraction unit could have limited the influence of temperature on mass transfer. The partition coefficient of analytes from the acceptor solution to the membrane, KA, was found to be much higher than that from the donor solution to the membrane KD, thus triazole compounds preferred to remain in the membrane even with an increased extraction temperature. [source]


    Simulation and validation of ethanol removal from water in an adsorption packed bed: Isotherm and mass transfer parameter determination in batch studies

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2010
    R. A. Jones
    Abstract Preferential adsorption of ethanol from ethanol/water mixtures in batch equilibrium and kinetic experiments were carried out on a commercially available activated carbon adsorbent Filtrasorb 600 (F-600). A model based on finite difference method was developed and employed to determine the mass transfer parameters and equilibrium behaviour for the adsorption of ethanol from simple batch systems. The estimates of the adsorption isotherm along with the mass transfer parameters were used to simulate the transient performance that could be expected in a packed bed under various operating conditions (feed flow rate, feed concentration, and particle size). The applicability of the simulation results were found to be a good match with experimental packed bed experiments over the entire range of operating conditions tested. La cinétique et l'isotherme d'adsorption de l'éthanol des mélanges eau/éthanol lors d'expériences en discontinus ont été déterminées pour un adsorbant au charbon activé disponible dans le commerce, le Filtrasorb 600 (F-600). Un modèle basé sur la méthode des différences finies a été développé et utilisé pour déterminer les paramètres de transfert de matière et étudier le comportement à l'équilibre pour l'adsorption préférentielle de l'éthanol en systèmes discontinus. Les estimations de l'isotherme d'adsorption aussi bien que les paramètres de transfert de matière ont été utilisées pour simuler la performance en régime transitoire d'un lit d'adsorbant sous diverses conditions de fonctionnement (taux d'écoulement du mélange, concentration du mélange et la taille des particules). L'applicabilité des résultats de simulation s'est avérée tout à fait concordante avec les données expérimentales sous toutes les conditions de fonctionnement examinées. [source]


    A multikinetic model approach to predict gluconic acid production in an airlift bioreactor

    BIOTECHNOLOGY JOURNAL, Issue 5 2007
    Mukesh Mayani
    Abstract This paper uses a multikinetic approach to predict gluconic acid (GA) production performance in a 4.5 L airlift bioreactor (ALBR). The mathematical model consists of a set of simultaneous firstorder ordinary differential equations obtained from material balances of cell biomass, GA, glucose, and dissolved oxygen. Multikinetic models, namely, logistic and contois equations constitute kinetic part of the main model. The main model also takes into account the hydrodynamic and mass transfer parameters. These equations were solved using ODE solver of MATLAB v6.5 software. The mathematical model was validated with the experimental data available in the literature and is used to predict the effect of change in initial biomass and air sparging rate on the GA production. It is concluded that the mathematical model incorporated with multikinetic approach would be more efficient to predict the change in operating parameters on overall bioprocess of GA production in an ALBR. [source]


    Activated Carbon Adsorbent for the Aqueous Phase Adsorption of Amoxicillin in a Fixed Bed

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 4 2010
    N. J. R. Ornelas
    Abstract Equilibrium constant and mass transfer parameters are needed for the study of amoxicillin separation in any process involving adsorption in fixed beds. In this work, the adsorption of amoxicillin and 6-aminopenillanic acid in aqueous solution on activated carbon were studied using static adsorption tests. The adsorption capacity was found to be strongly dependent on the pH of the aqueous phase. The adsorption constants, overall mass transfer coefficients, and axial dispersion coefficients for amoxicillin and 6-aminopenillanic acid were determined, by moment analysis, from a series of step tests in a fixed bed packed with activated carbon. The total bed voidage and axial dispersion coefficient were estimated from blue dextran pulse test data at different flow rates. The results show that adsorption intensity increased with increasing temperature. Furthermore, the increasing trend of HETP with velocity suggests that axial dispersion and mass transfer resistance control the column efficiency. [source]