Transfer Events (transfer + event)

Distribution by Scientific Domains


Selected Abstracts


Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2009
Alexander Loy
Summary Sulfur-oxidizing prokaryotes (SOP) catalyse a central step in the global S-cycle and are of major functional importance for a variety of natural and engineered systems, but our knowledge on their actual diversity and environmental distribution patterns is still rather limited. In this study we developed a specific PCR assay for the detection of dsrAB that encode the reversely operating sirohaem dissimilatory sulfite reductase (rDSR) and are present in many but not all published genomes of SOP. The PCR assay was used to screen 42 strains of SOP (most without published genome sequence) representing the recognized diversity of this guild. For 13 of these strains dsrAB was detected and the respective PCR product was sequenced. Interestingly, most dsrAB -encoding SOP are capable of forming sulfur storage compounds. Phylogenetic analysis demonstrated largely congruent rDSR and 16S rRNA consensus tree topologies, indicating that lateral transfer events did not play an important role in the evolutionary history of known rDSR. Thus, this enzyme represents a suitable phylogenetic marker for diversity analyses of sulfur storage compound-exploiting SOP in the environment. The potential of this new functional gene approach was demonstrated by comparative sequence analyses of all dsrAB present in published metagenomes and by applying it for a SOP census in selected marine worms and an alkaline lake sediment. [source]


Nuclear mitochondrial-like sequences in ants: evidence from Atta cephalotes (Formicidae: Attini)

INSECT MOLECULAR BIOLOGY, Issue 6 2007
J. Martins Jr
Abstract Nuclear mitochondrial-like sequences (numts) are copies of mitochondrial DNA that have migrated to the genomic DNA. We present the first characterization of numts in ants, these numts being homologues to a mitochondrial DNA fragment containing loci the 3, portion of the cytochrome oxidase I gene, an intergenic spacer, the tRNA leucine gene and the 5, portion of the cytochrome oxidase II gene. All 67 specimens of Atta cephalotes (Hymenoptera: Formicidae: Attini) investigated had these homologues, which are within two monophyletic groups that we called numt1 and numt2. Numt1 and numt2 sequences are less variable than mitochondrial sequences and released from the severe purifying selection constraining the evolution of mitochondrial genes. Their formation probably involved bottlenecks related to two distinct transfer events of ancient and fast evolving mitochondrial DNA fragments to comparative slowly evolving nuclear DNA regions. [source]


Conditions for conjugative transposon transfer in Lactococcus lactis

LETTERS IN APPLIED MICROBIOLOGY, Issue 5 2000
G. Blaiotta
Three different techniques for bacterial mating were applied to wild type and culture collection strains of Lactococcus lactis harbouring transposons: direct plate conjugation, filter mating and mating on milk agar. Efficiencies and frequencies of transfer were compared. Transconjugants were characterized by marker properties and molecular assays. Transposon-coded Suc+ Nis+ phenotype as well as Suc+ Bac+ Nis, phenotype were transferred with frequencies ranging between 10,9 and 10,6. Milk agar plate mating was the best technique for obtaining gene transfer events involving wild type lactococci. [source]


Generation of stable retrovirus packaging cell lines after transduction with herpes simplex virus hybrid amplicon vectors,

THE JOURNAL OF GENE MEDICINE, Issue 3 2002
Miguel Sena-Esteves
Abstract Background A number of properties have relegated the use of Moloney murine leukemia virus (Mo-MLV)-based retrovirus vectors primarily to ex vivo protocols. Direct implantation of retrovirus producer cells can bypass some of the limitations, and in situ vector production may result in a large number of gene transfer events. However, the fibroblast nature of most retrovirus packaging cells does not provide for an effective distribution of vector producing foci in vivo, especially in the brain. Effective development of new retrovirus producer cells with enhanced biologic properties may require the testing of a large number of different cell types, and a quick and efficient method to generate them is needed. Methods Moloney murine leukemia virus (Mo-MLV) gag-pol and env genes and retrovirus vector sequences carrying lacZ were cloned into different minimal HSV/AAV hybrid amplicons. Helper virus-free amplicon vectors were used to co-infect glioma cells in culture. Titers and stability of retrovirus vector production were assessed. Results Simultaneous infection of two glioma lines, Gli-36 (human) and J3T (dog), with both types of amplicon vectors, generated stable packaging populations that produced retrovirus titers of 0.5,1.2105 and 3.1,7.1103 tu/ml, respectively. Alternatively, when cells were first infected with retrovirus vectors followed by infection with HyRMOVAmpho amplicon vector, stable retrovirus packaging populations were obtained from Gli-36 and J3T cells producing retrovirus titers comparable to those obtained with a traditional retrovirus packaging cell line, ,CRIPlacZ. Conclusions This amplicon vector system should facilitate generation of new types of retrovirus producer cells. Conversion of cells with migratory or tumor/tissue homing properties could result in expansion of the spatial distribution or targeting capacity, respectively, of gene delivery by retrovirus vectors in vivo. Copyright 2002 John Wiley & Sons, Ltd. [source]


The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors

CELLULAR MICROBIOLOGY, Issue 10 2009
Irina S. Franco
Summary Only a limited number of bacterial pathogens evade destruction by phagocytic cells such as macrophages. Legionella pneumophila is a Gram-negative ,-proteobacterial species that can infect and replicate in alveolar macrophages, causing Legionnaires' disease, a severe pneumonia. L. pneumophila uses a complex secretion system to inject host cells with effector proteins capable of disrupting or altering the host cell processes. The L. pneumophila effectors target multiple processes but are essentially aimed at modifying the properties of the L. pneumophila phagosome by altering vesicular trafficking, gradually creating a specialized vacuole in which the bacteria replicate robustly. In nature, L. pneumophila is thought to parasitize free-living protists, which may have selected for traits that promote virulence of L. pneumophila in humans. Indeed, many effector genes encode proteins with eukaryotic domains and are likely to be of protozoan origin. Sustained horizontal gene transfer events within the protozoan niche may have allowed L. pneumophila to become a professional parasite of phagocytes, simultaneously giving rise to its ability to infect macrophages, cells that constitute the first line of cellular defence against bacterial infections. [source]


Organic Polyaromatic Hydrocarbons as Sensitizing Model Dyes for Semiconductor Nanoparticles

CHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 4 2010
Yongyi Zhang
Abstract The study of interfacial charge-transfer processes (sensitization) of a dye bound to large-bandgap nanostructured metal oxide semiconductors, including TiO2, ZnO, and SnO2, is continuing to attract interest in various areas of renewable energy, especially for the development of dye-sensitized solar cells (DSSCs). The scope of this Review is to describe how selected model sensitizers prepared from organic polyaromatic hydrocarbons have been used over the past 15 years to elucidate, through a variety of techniques, fundamental aspects of heterogeneous charge transfer at the surface of a semiconductor. This Review does not focus on the most recent or efficient dyes, but rather on how model dyes prepared from aromatic hydrocarbons have been used, over time, in key fundamental studies of heterogeneous charge transfer. In particular, we describe model chromophores prepared from anthracene, pyrene, perylene, and azulene. As the level of complexity of the model dye-bridge-anchor group compounds has increased, the understanding of some aspects of very complex charge transfer events has improved. The knowledge acquired from the study of the described model dyes is of importance not only for DSSC development but also to other fields of science for which electronic processes at the molecule/semiconductor interface are relevant. [source]