Home About us Contact | |||
Transfer Behavior (transfer + behavior)
Kinds of Transfer Behavior Selected AbstractsSurface-Transfer Doping of Organic Semiconductors Using Functionalized Self-Assembled Monolayers,ADVANCED FUNCTIONAL MATERIALS, Issue 8 2007W. Chen Abstract Controlling charge doping in organic semiconductors represents one of the key challenges in organic electronics that needs to be solved in order to optimize charge transport in organic devices. Charge transfer or charge separation at the molecule/substrate interface can be used to dope the semiconductor (substrate) surface or the active molecular layers close to the interface, and this process is referred to as surface-transfer doping. By modifying the Au(111) substrate with self-assembled monolayers (SAMs) of aromatic thiols with strong electron-withdrawing trifluoromethyl (CF3) functional groups, significant electron transfer from the active organic layers (copper(II) phthalocyanine; CuPc) to the underlying CF3 -SAM near the interface is clearly observed by synchrotron photoemission spectroscopy. The electron transfer at the CuPc/CF3 -SAM interface leads to an electron accumulation layer in CF3 -SAM and a depletion layer in CuPc, thereby achieving p-type doping of the CuPc layers close to the interface. In contrast, methyl (CH3)-terminated SAMs do not display significant electron transfer behavior at the CuPc/CH3 -SAM interface, suggesting that these effects can be generalized to other organic-SAM interfaces. Angular-dependent near-edge X-ray absorption fine structure (NEXAFS) measurements reveal that CuPc molecules adopt a standing-up configuration on both SAMs, suggesting that interface charge transfer has a negligible effect on the molecular orientation of CuPc on various SAMs. [source] Investigation of multiphase hydrogenation in a catalyst-trap microreactorJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2009S. McGovern BACKGROUND: Multiphase hydrogenation plays a critical role in the pharmaceutical industry. A significant portion of the reaction steps in a typical fine chemical synthesis are catalytic hydrogenations, generally limited by resistances to mass and heat transport. To this end, the small-scale and large surface-to-volume ratios of microreactor technology would greatly benefit chemical processing in the pharmaceutical and other industries. A silicon microreactor has been developed to investigate mass transfer in a catalytic hydrogenation reaction. The reactor design is such that solid catalyst is suspended in the reaction channel by an arrangement of catalyst traps. The design supports the use of commercial catalyst and allows control of pressure drop across the bed by engineering the packing density. RESULTS: This paper discusses the design and operation of the reactor in the context of the liquid-phase hydrogenation of o-nitroanisole to o-anisidine. A two-phase ,flow map' is generated across a range of conditions depicting three flow regimes, termed gas-dominated, liquid-dominated, and transitional, all with distinctly different mass transfer behavior. Conversion is measured across the flow map and then reconciled against the mass transfer characteristics of the prevailing flow regime. The highest conversion is achieved in the transitional flow regime, where competition between phases induces the most favorable gas,liquid mass transfer. CONCLUSION: The results are used to associate a mass transfer coefficient with each flow regime to quantify differences in performance. This reactor architecture may be useful for catalyst evaluation through rapid screening, or in large numbers as an alternative to macro-scale production reactors. Copyright © 2008 Society of Chemical Industry [source] Intramolecular electronic communication in a dimethylaminoazobenzene,fullerene C60 dyad: An experimental and TD-DFT studyJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 6 2010K. Senthil Kumar Abstract An electronically push,pull type dimethylaminoazobenzene,fullerene C60 hybrid was designed and synthesized by tailoring N,N -dimethylaniline as an electron donating auxochrome that intensified charge density on the ,-azonitrogen, and on N -methylfulleropyrrolidine (NMFP) as an electron acceptor at the 4 and 4, positions of the azobenzene moiety, respectively. The absorption and charge transfer behavior of the hybrid donor-bridge-acceptor dyad were studied experimentally and by performing TD-DFT calculations. The TD-DFT predicted charge transfer interactions of the dyad ranging from 747 to 601 nm were experimentally observed in the UV-vis spectra at 721 nm in toluene and dichloromethane. A 149 mV anodic shift in the first reduction potential of the NN group of the dyad in comparison with the model aminoazobenzene derivative further supported the phenomenon. Analysis of the charge transfer band through the orbital picture revealed charge displacement from the n(NN) (nonbonding) and , (NN) type orbitals centered on the donor part to the purely fullerene centered LUMOs and LUMO+n orbitals, delocalized over the entire molecule. The imposed electronic perturbations on the aminoazobenzene moiety upon coupling it with C60 were analyzed by comparing the TD-DFT predicted and experimentally observed electronic transition energies of the dyad with the model compounds, NMFP and (E)-N,N -dimethyl-4-(p-tolyldiazenyl)aniline (AZNME). The n(NN) , ,*(NN) and ,(NN) , ,*(NN) transitions of the dyad were bathochromically shifted with a significant charge transfer character. The shifting of ,(NN) , ,*(NN) excitation energy closer to the n , ,*(NN) in comparison with the model aminoazobenzene emphasized the predominant existence of charge separated quinonoid-like ground state electronic structure. Increasing solvent polarity introduced hyperchromic effect in the ,(NN) , ,*(NN) electronic transition at the expense of transitions involved with benzenic states, and the extent of intensity borrowing was quantified adopting the Gaussian deconvolution method. On a comparative scale, the predicted excitation energies were in reasonable agreement with the observed values, demonstrating the efficiency of TD-DFT in predicting the localized and the charge transfer nature of transitions involved with large electronically asymmetric molecules with HOMO and LUMO centered on different parts of the molecular framework. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010 [source] KINETICS OF OSMOTIC DEHYDRATION IN ORANGE AND MANDARIN PEELSJOURNAL OF FOOD PROCESS ENGINEERING, Issue 4 2001M. CHÁFER ABSTRACT The nutritional and health properties of some citrus peel components such as pectin, flavonoids, carotenoids or limonene make interesting developing processing methods to obtain peel stable products, maintaining its quality attributes, increasing its sweetness and improving its sensory acceptability. In this sense, osmotic dehydration represents a useful alternative by using sugar solutions at mild temperature. Kinetics of osmotic treatments of orange and mandarin peels carried out at atmospheric pressure and by applying a vacuum pulse at the beginning of the process were analysed at 30, 40 and 50C, in 65 °Brix sucrose, 55 °Brix glucose and 60 °Brix rectified grape must. Vacuum pulse greatly affected mass transfer behavior of peels due to the greatly porous structure of albedo. So, PVOD treatments greatly accelerate the changes in the product composition in line with an increase in the peel sample thickness. In osmotic processes at atmospheric pressure, sample impregnation occurs coupled with osmotic process, but much longer treatments are required to achieve a reasonable concentration degree which assures sample stability. Low viscosity osmotic solutions seems recommendable in order to promote both diffusional and hydrodynamic transport, in vacuum pulsed pretreatments at mild temperatures. [source] Energy Transfer from Locally Excited ,* to Charge Transfer Ground States in a Silylene,, Hetero-Junction PolymerMACROMOLECULAR RAPID COMMUNICATIONS, Issue 18 2006Giseop Kwak Abstract Summary: The silylene,, conjugating polymer, poly(di- n -hexylsilylenephenylene-ethynylenephenylene) (1) adopted a fairly flexible coil-like conformation due to the bent structure of silylene moiety and showed a unique photoexcited energy transfer behavior. The UV-vis absorption and steady-state/time-resolved photoluminescence studies revealed the occurrence of an intramolecular photoexcited energy transfer (IET) between locally excited ,* to charge transfer ground states as well as an intramolecular charge transfer (ICT). The silylene,, conjugating polymer, poly(di- n -hexylsilylenephenylene-ethynylenephenylene) showing a unique photoexcited energy transfer behavior. [source] Heat transfer behavior of melting polymers in laminar flow fieldPOLYMER ENGINEERING & SCIENCE, Issue 3 2004Sadao Sato Heat transfer coefficients were investigated by insertion of a probe into melting polymers under laminar flow at 200,240°C and a flow velocity of 0.5,2.7 mm/sec. The average heat transfer coefficients of melting polypropylene (PP) and polystyrene (PS) were found to be 160,220 W/m·°C and 180,270 W/m·°C, respectively. These coefficients show remarkable dependence on flow velocity, and the average heat transfer coefficient of PS is about 13%,23% higher than that of PP. When the flow velocity of flowing melting PP and PS exceeds about 0.078mm/sec, heat transfer by convection becomes dominant, whereas under lower flow velocities, since the equivalent conduction layer thickness ,, in which the quiescent state without flow approaches infinity, heat transfer by conduction becomes dominant. The Prandtl number (Pr) and Nusselt number (Nu) of melting PP are 125,133 × 106 and 38.6,51.4, respectively, and those of melting PS are 63,64 × 106 and 42.3,61.3. In the case of constant flow velocity, the Peclet number (Pe) and Stanton number (St) are dependent on the specific heat of melting polymer. Polym. Eng. Sci. 44:423,432, 2004. © 2004 Society of Plastics Engineers. [source] Carrier effects on oxygen mass transfer behavior in a moving-bed biofilm reactorASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009Jie Ying Jing Abstract This study investigates the carrier effects on the oxygen mass transfer behavior of a gas,liquid biofilm surface, and aims to provide evidence for parameter optimization in the practical operation of a moving-bed biofilm reactor (MBBR) during the coking-plant wastewater process. By using the dynamic oxygen dissolution method, the volumetric oxygen mass transfer coefficient KLa was measured by varying the suspended carrier stuffing rate and the intensity of aeration. Within the range of fluidizable flow rate, the efficiency of oxygen mass transfer increased with suspended carrier stuffing rate, and KLa reached its peak value when the stuffing rate was 40%. KLa has an increasing trend with an increase of the aeration intensity, but high aeration intensity was not favorable for reactor operation. Better oxygen mass transfer effect and higher oxygen transfer efficiency could be achieved when the aeration intensity was 0.3 m3 h,1 and the suspended carrier stuffing rate was 30,50%. The possible mechanisms that can account for carrier effects on oxygen mass transfer are the changes in the gas,liquid interfacial area. The ammonia nitrogen removal performance of the coking-plant wastewater in MBBR was satisfied by using the above-suggested conditions. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tubeAICHE JOURNAL, Issue 12 2009Yongzhi Zhao Abstract A kind of new modified computational fluid dynamics-discrete element method (CFD-DEM) method was founded by combining CFD based on unstructured mesh and DEM. The turbulent dense gas,solid two phase flow and the heat transfer in the equipment with complex geometry can be simulated by the programs based on the new method when the k-, turbulence model and the multiway coupling heat transfer model among particles, walls and gas were employed. The new CFD-DEM coupling method that combining k-, turbulence model and heat transfer model, was employed to simulate the flow and the heat transfer behaviors in the fluidized bed with an immersed tube. The microscale mechanism of heat transfer in the fluidized bed was explored by the simulation results and the critical factors that influence the heat transfer between the tube and the bed were discussed. The profiles of average solids fraction and heat transfer coefficient between gas-tube and particle-tube around the tube were obtained and the influences of fluidization parameters such as gas velocity and particle diameter on the transfer coefficient were explored by simulations. The computational results agree well with the experiment, which shows that the new CFD-DEM method is feasible and accurate for the simulation of complex gas,solid flow with heat transfer. And this will improve the farther simulation study of the gas,solid two phase flow with chemical reactions in the fluidized bed. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] |