Transfection Protocol (transfection + protocol)

Distribution by Scientific Domains


Selected Abstracts


Highly efficient gene transfer into hepatocyte-like HepaRG cells: New means for drug metabolism and toxicity studies

BIOTECHNOLOGY JOURNAL, Issue 3 2010
Veronique Laurent
Abstract HepaRG progenitor cells are capable of differentiating into hepatocyte-like cells that express a large set of liver-specific functions. These cells, however, only express small amounts of an important cytochrome P450, the CYP2E1, which limits their use for toxicological studies of drugs metabolized by this pathway. Our aim was to establish an efficient transfection protocol to increase CYP2E1 expression in HepaRG cells. Transfection protocols of the green fluorescent protein (GFP) reporter gene were evaluated using electroporation and cationic lipids belonging to the lipophosphonates, lipophosphoramidates and lipids derived from glycine betaine. Following optimization of the charge ratios, plasmid DNA and formulations with neutral co-lipids, the lipophosphoramidate compounds KLN47 and BSV10, allowed expression of the GFP in ,50% of adherent progenitor HepaRG cells, while electroporation targeted GFP expression in ,85% of both progenitor and differentiated cells in suspension. Transient enforced expression of active CYP2E1 was also achieved in progenitors and/or differentiated HepaRG cells using the electroporation and the lipophosphoramidate compound BSV10. Importantly, in electroporated cells, CYP2E1 expression level was correlated with a significant increase in CYP2E1-specific enzymatic activity, which opens new perspectives for this CYP-dependent drug metabolism and toxicity studies using HepaRG cells. [source]


Osteoblast-Derived TGF-,1 Stimulates IL-8 Release Through AP-1 and NF-,B in Human Cancer Cells,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2008
Yi-Chin Fong
Abstract Introduction: The bone marrow microenvironment is further enriched by growth factors released during osteoclastic bone resorption. It has been reported that the chemokine interleukin (IL)-8 is a potent and direct activator of osteoclastic differentiation and bone resorption. However, the effect of bone-derived growth factors on the IL-8 production in human cancer cells and the promotion of osteoclastogenesis are largely unknown. The aim of this study was to investigate whether osteoblast-derived TGF-,1 is associated with osteolytic bone diseases. Materials and Methods: IL-8 mRNA levels were measured using RT-PCR analysis. MAPK phosphorylation was examined using the Western blot method. siRNA was used to inhibit the expression of TGF-,1, BMP-2, and IGF-1. DNA affinity protein-binding assay and chromatin immunoprecipitation assays were used to study in vitro and in vivo binding of c- fos, c- jun, p65, and p50 to the IL-8 promoter. A transient transfection protocol was used to examine IL-8, NF-,B, and activator protein (AP)-1 activity. Results: Osteoblast conditioned medium (OBCM) induced activation of IL-8, AP-1, and NF-,B promoter in human cancer cells. Osteoblasts were transfected with TGF-,1, BMP-2, or IGF-1 small interfering RNA, and the medium was collected after 48 h. TGF-,1 but not BMP-2 or IGF-1 siRNA inhibited OBCM-induced IL-8 release in human cancer cells. In addition, TGF-,1 also directly induced IL-8 release in human cancer cells. Activation of AP-1 and NF-,B DNA-protein binding and MAPKs after TGF-,1 treatment was shown, and TGF-,1,induced IL-8 promoter activity was inhibited by the specific inhibitors of MAPK cascades. Conclusions: In this study, we provide evidence to show that the osteoblasts release growth factors, including TGF-,1, BMP-2, and IGF-1. TGF-,1 is the major contributor to the activation of extracellular signal-related kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), leading to the activation of AP-1 and NF-,B on the IL-8 promoter and initiation of IL-8 mRNA and protein release, thereby promoting osteoclastogenesis. [source]


Highly efficient gene transfer into hepatocyte-like HepaRG cells: New means for drug metabolism and toxicity studies

BIOTECHNOLOGY JOURNAL, Issue 3 2010
Veronique Laurent
Abstract HepaRG progenitor cells are capable of differentiating into hepatocyte-like cells that express a large set of liver-specific functions. These cells, however, only express small amounts of an important cytochrome P450, the CYP2E1, which limits their use for toxicological studies of drugs metabolized by this pathway. Our aim was to establish an efficient transfection protocol to increase CYP2E1 expression in HepaRG cells. Transfection protocols of the green fluorescent protein (GFP) reporter gene were evaluated using electroporation and cationic lipids belonging to the lipophosphonates, lipophosphoramidates and lipids derived from glycine betaine. Following optimization of the charge ratios, plasmid DNA and formulations with neutral co-lipids, the lipophosphoramidate compounds KLN47 and BSV10, allowed expression of the GFP in ,50% of adherent progenitor HepaRG cells, while electroporation targeted GFP expression in ,85% of both progenitor and differentiated cells in suspension. Transient enforced expression of active CYP2E1 was also achieved in progenitors and/or differentiated HepaRG cells using the electroporation and the lipophosphoramidate compound BSV10. Importantly, in electroporated cells, CYP2E1 expression level was correlated with a significant increase in CYP2E1-specific enzymatic activity, which opens new perspectives for this CYP-dependent drug metabolism and toxicity studies using HepaRG cells. [source]


Nucleofection: a new, highly efficient transfection method for primary human keratinocytes,

EXPERIMENTAL DERMATOLOGY, Issue 4 2005
Jörg H. W. Distler
Abstract:, Transfection is an essential tool for numerous in vitro applications including studies of gene expression, promoter analysis, and intracellular signaling pathways and also for therapeutic strategies such as tissue engineering and gene therapy. However, transfection of primary cells including keratinocytes with common methods such as calcium phosphate, DEAE-dextran, liposome-mediated transfer, electroporation or viral vectors is problematic because of low transfection efficiency and the induction of terminal differentiation. Here we analyzed the use of nucleofection, a new, electroporation-based transfection method that enables the DNA to enter directly the nucleus, for the transfection of keratinocytes. Several different conditions were tested and optimized, resulting in a final transfection efficiency of 56% in primary human epidermal keratinocytes. This efficiency is superior to all non-viral transfection methods reported so far. The number of non-viable keratinocytes after nucleofection was low, varying between 14 and 16%. In contrast to other transfection protocols, nucleofection did not induce terminal differentiation in the transfected keratinocytes. In addition, nucleofection is a fast method, because the results can be analyzed within 7 h. In summary, nucleofection is a fast, easy and highly effective alternative for the transfection of primary human keratinocytes, which offers new opportunities for various research applications. [source]