Transcriptionally

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Transcriptionally

  • transcriptionally active
  • transcriptionally silent

  • Selected Abstracts


    Transcriptionally mediated inhibition of telomerase of fungal immunomodulatory protein from Ganoderma tsugae in A549 human lung adenocarcinoma cell line

    MOLECULAR CARCINOGENESIS, Issue 4 2006
    Chien-Huang Liao
    Abstract Telomerase expression is the hallmark of tumor cells, and activation of this ribonucleoprotein complex may be a rate-limiting or critical step in cellular immortalization and oncogenesis. Fungal immunomodulatory protein, FIP-gts, has been isolated from Ganoderma tsugae. In the present study, we expressed and purified the recombinant fungal immunomodulatory protein reFIP-gts in E. coli. We found that reFIP-gts significantly and selectively inhibits the growth of A549 cancer cells while not affecting the growth of normal MRC-5 fibroblasts. The reFIP-gts suppression of telomerase activity is concentration-dependent, due to the downregulation of the telomerase catalytic subunit (hTERT). It also happens at the mRNA level. These results were confirmed by transient transfections of A549 cells with pGL3-Basic plasmid constructs containing the functional hTERT promoter and its E-box-deleted sequences cloned upstream of a luciferase reporter gene. With electrophoretic mobility shift assays and Western blotting, we demonstrated that in response to reFIP-gts, binding of c- myc transcriptional factor to the E-box sequence on the hTERT promoter is inhibited. These results show that reFIP-gts suppresses telomerase activity and inhibits transcriptional regulation of hTERT via a c- myc -responsive element-dependent mechanism. Our findings provide new insight into both the anticancer function of reFIP-gts and the regulation of hTERT/telomerase expression, which may be valuable in the development of a promising chemopreventive agent. © 2006 Wiley-Liss, Inc. [source]


    Transcriptional regulation of ASK/Dbf4 in cutaneous melanoma is dependent on E2F1

    EXPERIMENTAL DERMATOLOGY, Issue 12 2008
    Sandeep Nambiar
    Background:, Melanoma is a complex genetic disease, the management of which will require an in-depth understanding of the biology underlying its initiation and progression. Recently, we have reported the differential regulation of a novel gene, namely ASK/Dbf4, in melanoma and suggested upregulation of ASK/Dbf4 as a novel molecular determinant with prognostic relevance that confers a proliferative advantage in cutaneous melanoma. As trans -acting factor binding is fundamental to understand the regulation of gene expression, this study focuses on characterization of the specific transcriptional regulation of ASK/Dbf4 in melanoma. Objective:, We investigated whether ASK/Dbf4 is a transcriptional target of the important cell cycle regulator E2F1 in melanoma. Results:, As evidenced by gel supershift assays on nuclear extracts from various melanoma cell lines (SK-MEL-28, MV3, M13, A375 and BLM), E2F1 bound to the ASK/Dbf4 minimal promoter (MP). In addition, cisplatin-mediated abrogation of E2F1 binding to the ASK/Dbf4 MP resulted in a transcriptional decrease in ASK/Dbf4. Further, the current study also demonstrated that ASK/Dbf4 regulation was refractory to UVB, a well-known risk factor for melanoma. Conclusions:, In summary, our study not only elucidated that ASK/Dbf4, a novel cell survival gene in melanoma was transcriptionally regulated by E2F1, but also that the induction of ASK/Dbf4 was refractory to UVB exposure suggesting that its upregulation was not an early event in melanomagenesis. [source]


    Mixed lineage leukemia histone methylases play critical roles in estrogen-mediated regulation of HOXC13

    FEBS JOURNAL, Issue 24 2009
    Khairul I. Ansari
    HOXC13, a homeobox-containing gene, is involved in hair development and human leukemia. The regulatory mechanism that drives HOXC13 expression is mostly unknown. Our studies have demonstrated that HOXC13 is transcriptionally activated by the steroid hormone estrogen (17,-estradiol; E2). The HOXC13 promoter contains several estrogen-response elements (EREs), including ERE1 and ERE2, which are close to the transcription start site, and are associated with E2-mediated activation of HOXC13. Knockdown of the estrogen receptors (ERs) ER, and ER, suppressed E2-mediated activation of HOXC13. Similarly, knockdown of mixed lineage leukemia histone methylase (MLL)3 suppressed E2-induced activation of HOXC13. MLLs (MLL1,MLL4) were bound to the HOXC13 promoter in an E2-dependent manner. Knockdown of either ER, or ER, affected the E2-dependent binding of MLLs (MLL1,MLL4) into HOXC13 EREs, suggesting critical roles of ERs in recruiting MLLs in the HOXC13 promoter. Overall, our studies have demonstrated that HOXC13 is transcriptionally regulated by E2 and MLLs, which, in coordination with ER, and ER,, play critical roles in this process. Although MLLs are known to regulate HOX genes, the roles of MLLs in hormone-mediated regulation of HOX genes are unknown. Herein, we have demonstrated that MLLs are critical players in E2-dependent regulation of the HOX gene. [source]


    Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signals

    FEBS JOURNAL, Issue 16 2009
    Joan Duran
    The ubiquitous isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (uPFK-2), a product of the Pfkfb3 gene, plays a crucial role in the control of glycolytic flux. In this study, we demonstrate that Pfkfb3 gene expression is increased in streptozotocin-induced diabetic mouse liver. The Pfkfb3/-3566 promoter construct linked to the luciferase reporter gene was delivered to the liver via hydrodynamic gene transfer. This promoter was upregulated in streptozotocin-induced diabetic mouse liver compared with transfected healthy cohorts. In addition, increases were observed in Pfkfb3 mRNA and uPFK-2 protein levels, and intrahepatic fructose-2,6-bisphosphate concentration. During streptozotocin-induced diabetes, phosphorylation of both p38 mitogen-activated protein kinase and Akt was detected, together with the overexpression of the proliferative markers cyclin D and E2F. These findings indicate that uPFK-2 induction is coupled to enhanced hepatocyte proliferation in streptozotocin-induced diabetic mouse liver. Expression decreased when hepatocytes were treated with either rapamycin or LY 294002. This shows that uPFK-2 regulation is phosphoinositide 3-kinase,Akt,mammalian target of rapamycin dependent. These results indicate that fructose-2,6-bisphosphate is essential to the maintenance of the glycolytic flux necessary for providing energy and biosynthetic precursors to dividing cells. [source]


    Characterization of chitinase-like proteins (Cg -Clp1 and Cg -Clp2) involved in immune defence of the mollusc Crassostrea gigas

    FEBS JOURNAL, Issue 14 2007
    Fabien Badariotti
    Chitinase-like proteins have been identified in insects and mammals as nonenzymatic members of the glycoside hydrolase family 18. Recently, the first molluscan chitinase-like protein, named Crassostrea gigas (Cg)-Clp1, was shown to control the proliferation and synthesis of extracellular matrix components of mammalian chondrocytes. However, the precise physiological roles of Cg -Clp1 in oysters remain unknown. Here, we report the cloning and the characterization of a new chitinase-like protein (Cg -Clp2) from the oyster Crassostrea gigas. Gene expression profiles monitored by quantitative RT-PCR in adult tissues and through development support its involvement in tissue growth and remodelling. Both Cg -Clp1- and Cg -Clp2-encoding genes were transcriptionally stimulated in haemocytes in response to bacterial lipopolysaccharide challenge, strongly suggesting that these two close paralogous genes play a role in oyster immunity. [source]


    15-Deoxy ,12,14 -prostaglandin J2 suppresses transcription by promoter 3 of the human thromboxane A2 receptor gene through peroxisome proliferator-activated receptor , in human erythroleukemia cells

    FEBS JOURNAL, Issue 18 2005
    Adrian T. Coyle
    In humans, thromboxane (TX) A2 signals through two receptor isoforms, thromboxane receptor (TP), and TP,, which are transcriptionally regulated by distinct promoters, Prm1 and Prm3, respectively, within the single TP gene. The aim of the current study was to investigate the ability of the endogenous peroxisome proliferator-activated receptor (PPAR), ligand 15-deoxy-,12,14 -prostaglandin J2 (15d-PGJ2) to regulate expression of the human TP gene and to ascertain its potential effects on the individual TP, and TP, isoforms. 15d-PGJ2 suppressed Prm3 transcriptional activity and TP, mRNA expression in the platelet progenitor megakaryocytic human erythroleukemia (HEL) 92.1.7 cell line but had no effect on Prm1 or Prm2 activity or on TP, mRNA expression. 15d-PGJ2 also resulted in reductions in the overall level of TP protein expression and TP-mediated intracellular calcium mobilization in HEL cells. 15d-PGJ2 suppression of Prm3 transcriptional activity and TP, mRNA expression was found to occur through a novel mechanism involving direct binding of PPAR,,retinoic acid X receptor (RXR) heterodimers to a PPAR, response element (PPRE) composed of two imperfect hexameric direct repeat (DR) sequences centred at ,159 and ,148, respectively, spaced by five nucleotides (DR5). These data provide direct evidence for the role of PPAR, in the regulation of human TP gene expression within the vasculature and point to further critical differences in the modes of transcriptional regulation of TP, and TP, in humans. Moreover, these data highlight a further link between enhanced risk of cardiovascular disease in diabetes mellitus associated with increased synthesis and action of thromboxane A2 (TXA2). [source]


    Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures

    FEMS YEAST RESEARCH, Issue 4 2007
    Viktor M. Boer
    Abstract Aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae grown with six different nitrogen sources were subjected to transcriptome analysis. The use of chemostats enabled an analysis of nitrogen-source-dependent transcriptional regulation at a fixed specific growth rate. A selection of preferred (ammonium and asparagine) and nonpreferred (leucine, phenylalanine, methionine and proline) nitrogen sources was investigated. For each nitrogen source, distinct sets of genes were induced or repressed relative to the other five nitrogen sources. In total, 131 such ,signature transcripts' were identified in this study. In addition to signature transcripts, genes were identified that showed a transcriptional coresponse to two or more of the six nitrogen sources. For example, 33 genes were transcriptionally upregulated in leucine-grown, phenylalanine-grown and methionine-grown cultures; this was partly attributed to the involvement of common enzymes in the dissimilation of these amino acids. In addition to specific transcriptional responses elicited by individual nitrogen sources, their impact on global regulatory mechanisms such as nitrogen catabolite repression (NCR) were monitored. NCR-sensitive gene expression in the chemostat cultures showed that ammonium and asparagine were ,rich' nitrogen sources. By this criterion, leucine, proline and methionine were ,poor' nitrogen sources, and phenylalanine showed an ,intermediate' NCR response. [source]


    Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation

    GENES TO CELLS, Issue 7 2009
    Meixiang Sang
    Plk3, one of Polo-like kinase family members, is involved in the regulation of cell cycle progression and DNA damage response. In this study, we found that Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation. During cisplatin (CDDP)-mediated apoptosis, Plk3 was transcriptionally induced, whereas its protein level was kept at basal level, suggesting that Plk3 might rapidly degrade in response to CDDP. Immunoprecipitation and in vitro pull-down experiments demonstrated that Plk3 interacts with p73. Luciferase reporter assays and RT-PCR experiments revealed that Plk3 inhibits p73-mediated transcriptional activity. Consistent with these results, pro-apoptotic activity of p73 was blocked by Plk3. Additionally, Plk3 decreased the stability of p73. Intriguingly, kinase-deficient Plk3 failed to inhibit p73 function, indicating that kinase activity of Plk3 is required for Plk3-mediated inhibition of p73. Indeed, in vitro kinase reaction showed that NH2 -terminal portion of p73 is phosphorylated by Plk3. In accordance with these observations, knocking down of Plk3 increased the stability of p73 and promoted CDDP-mediated apoptosis in association with up-regulation of p73. Collectively, our present findings suggest that Plk3 plays an important role in the regulation of cell fate determination in response to DNA damage through the inhibition of p73. [source]


    Increased genomic instability and altered chromosomal protein phosphorylation timing in HRAS -transformed mouse fibroblasts

    GENES, CHROMOSOMES AND CANCER, Issue 5 2009
    Katherine L. Dunn
    The RAS-mitogen-activated protein kinase signaling pathway is often deregulated in cancer cells. In metastatic HRAS -transformed mouse fibroblasts (Ciras-3), the RAS-MAPK pathway is constitutively activated. We show here that Ciras-3 cells exhibit a higher incidence of chromosomal instability than 10T1/2 cells, including higher levels of clonal and nonclonal chromosomal aberrations. Stimulation of serum starved 10T1/2 and Ciras-3 cells with phorbol esters (TPA) results in the phosphorylation of histone H3 at serine 10 and serine 28. Regardless of the increased genomic instability in Ciras-3 cells, TPA-induced H3 phosphorylated at serine 10 and H3 phosphorylated at serine 28 partitioned into distinct nuclear subdomains as they did in the parental cells. However, the timing of the response of the H3 phosphorylation event to TPA induction was delayed in Ciras-3 cells. Further Ciras-3 cells, which have a more open chromatin structure, had increased steady state levels of phosphorylated H3 and HMGN1 relative to parental 10T1/2 cells. TPA-induced H3 phosphorylated at serine 10 and 28 were colocalized with the transcriptionally initiated form of RNA polymerase II in 10T1/2 and Ciras-3 cells. Chromatin immunoprecipitation assays demonstrated that TPA-induced H3 phosphorylation at serine 28 was associated with the immediate early JUN promoter, providing direct evidence that this histone post-translational modification is associated with transcriptionally active genes. Together our results demonstrate the increased genomic instability and alterations in the epigenetic program in HRAS -transformed cells. © 2009 Wiley-Liss, Inc. [source]


    The Bcl-2 family pro-apoptotic molecule, BNIP3 regulates activation-induced cell death of effector cytotoxic T lymphocytes

    IMMUNOLOGY, Issue 1 2003
    J. Wan
    Summary BNIP3 is a recently described pro-apoptotic member of the Bcl-2 family and in BNIP3 cDNA-transfected cell lines, cell death occurs via a caspase-independent pathway with opening of the mitochondrial permeability transition (PT) pore and rapid loss of mitochondrial transmembrane potential (,,m). However, its expression or function in physiologic cell types is not known. Our results using the T-cell receptor transgenic mice P14, specific for lymphocyte choreomeningitis virus (LCMV) glycoprotein, show that in contrast to the other Bcl-2 family pro-apoptotic molecules, BNIP3 is transcriptionally highly up-regulated in effector cytotoxic T lymphocytes (CTL). Because CTL have a propensity to undergo activation-induced cell death (AICD) upon restimulation, we tested for other features associated with BNIP3-induced cell death. AICD of CTL was caspase-independent as determined by measuring caspase activation during target cell killing as well as by lack of inhibition with caspase inhibitors. Moreover, similar to BNIP3-induced cell death, CTL apoptosis was associated with increased production of reactive oxygen species and decreased ,,m. Finally, retroviral transduction of BNIP3 antisense RNA diminished AICD in effector CTL. These results suggest that BNIP3 may play an important role in T-cell homeostasis by regulating effector CTL numbers. [source]


    Cloning and characterization of Dorsal homologues in the hemipteran Rhodnius prolixus

    INSECT MOLECULAR BIOLOGY, Issue 5 2009
    R. Ursic-Bedoya
    Abstract Rhodnius prolixus is an ancient haematophagous hemipteran insect capable of mounting a powerful immune response. This response is transcriptionally regulated in part by transcription factors of the Rel/Nuclear Factor kappa B (Rel/NF-,B) family. We have cloned and characterized three members of this transcription factor family in this insect. Dorsal 1A is primarily expressed in early developmental stages. In contrast, dorsal 1B and 1C, both differentially spliced products of dorsal 1A, are expressed primarily in the adult fat body in response to septic injury, suggesting their exclusive role in immunity. Additionally, we identified putative ,B binding sites in the 5, upstream regions of target genes known to be involved in the innate immune response of insects. [source]


    The ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm, Bombyx mori, is transcriptionally regulated by prothoracicotropic hormone

    INSECT MOLECULAR BIOLOGY, Issue 5 2005
    R. Niwa
    Abstract During larval and pupal development of insects, ecdysone is synthesized in the prothoracic gland (PG). Although several Drosophila genes, including Halloween P450 genes, are known to be important for ecdysteroidogenesis in PG, little is known of the ecdysteroidogenic genes in other insects. Here we report on Cyp302a1/disembodied (dib-Bm), one of the Halloween P450s in the silkworm Bombyx mori that is a carbon-22 hydroxylase. dib-Bm is predominantly expressed in PG and its developmental expression profile is correlated with a change in the ecdysteroid titre in the haemolymph. Furthermore, dib-Bm expression in cultured PGs is significantly induced by treatment with prothoracicotropic hormone. This is the first report on the transcriptional induction of a steroidogenic gene by the tropic hormone in insects. [source]


    Proteasome inhibition with bortezomib suppresses growth and induces apoptosis in osteosarcoma

    INTERNATIONAL JOURNAL OF CANCER, Issue 1 2010
    Yuriy Shapovalov
    Abstract Osteosarcomas are primary bone tumors of osteoblastic origin that mostly affect adolescent patients. These tumors are highly aggressive and metastatic. Previous reports indicate that gain of function of a key osteoblastic differentiation factor, Runx2, leads to growth inhibition in osteosarcoma. We have previously established that Runx2 transcriptionally regulates expression of a major proapoptotic factor, Bax. Runx2 is regulated via proteasomal degradation, and proteasome inhibition has a stimulatory effect on Runx2. In this study, we hypothesized that proteasome inhibition will induce Runx2 and Runx2-dependent Bax expression sensitizing osteosarcoma cells to apoptosis. Our data showed that a proteasome inhibitor, bortezomib, increased Runx2 and Bax in osteosarcoma cells. In vitro, bortezomib suppressed growth and induced apoptosis in osteosarcoma cells but not in nonmalignant osteoblasts. Experiments involving intratibial tumor xenografts in nude mice demonstrated significant tumor regression in bortezomib-treated animals. Immunohistochemical studies revealed that bortezomib inhibited cell proliferation and induced apoptosis in osteosarcoma xenografts. These effects correlated with increased immunoreactivity for Runx2 and Bax. In summary, our results indicate that bortezomib suppresses growth and induces apoptosis in osteosarcoma in vitro and in vivo suggesting that proteasome inhibition may be effective as an adjuvant to current treatment regimens for these tumors. Published 2009 UICC. This article is a US Government work and, as such, is in the public domain in the United States of America. [source]


    Id1 expression is transcriptionally regulated in radial growth phase melanomas

    INTERNATIONAL JOURNAL OF CANCER, Issue 8 2007
    Byungwoo Ryu
    Abstract Id genes have been demonstrated to be upregulated in a wide variety of human malignancies and their expression has been correlated with disease prognosis; however, little is known about the mechanisms of Id gene activation in tumors. We have previously shown that the helix-loop-helix transcription factor, Id1, is highly expressed in primary human melanomas during the radial growth phase and that Id1 is a transcriptional repressor of the familial melanoma gene CDKN2A. Here we use a series of melanoma cell lines that recapitulate the phenotypic characteristics of melanomas at varying stages of malignant progression to evaluate the expression levels of Id1 in this model system and determine the mechanism of Id1 dysregulation in these tumor cells. We find elevated protein levels of Id1 to be present consistently in radial growth phase tumor cells in accordance with our primary tumor data. Id1 transcript levels were also found to be elevated in these radial growth phase melanoma cells without any appreciable evidence of gene amplification and Id1 promoter activity was found to correlate with Id expression levels. We therefore conclude that Id1 expression is primarily regulated at the transcriptional level in radial growth phase melanomas and expect that therapies that target Id1 gene expression may be useful in the treatment of Id-associated malignancies. © 2007 Wiley-Liss, Inc. [source]


    ,-6 Polyunsaturated fatty acid ,-linolenic acid (18:3n-6) is a selective estrogen-response modulator in human breast cancer cells: ,-Linolenic acid antagonizes estrogen receptor-dependent transcriptional activity, transcriptionally represses estrogen receptor expression and synergistically enhances tamoxifen and ICI 182,780 (Faslodex) efficacy in human breast cancer cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 6 2004
    Javier A. Menendez
    First page of article [source]


    Ionizing radiation as a response-enhancing agent for CD95-mediated apoptosis

    INTERNATIONAL JOURNAL OF CANCER, Issue 4 2001
    Michael A. Sheard Ph.D.
    Abstract CD95 (Fas/APO-1) is a death receptor on the surface of a wide variety of cell types. In most cells examined, ionizing radiation acts as a response-enhancing agent for CD95-mediated cell death. Although DNA-damaging radiation appears to modulate CD95-mediated signals through multiple mechanisms, the only well-characterized mechanism is activation of the tumor-suppressor protein p53, which transcriptionally regulates the expression of CD95 on various cell types. The ligand for CD95 is expressed by activated lymphocytes and natural-killer cells, which produce factors that sensitize cells resistant to CD95-mediated cell death. Ligation of CD95 on irradiated tumor cells might be achievable using emerging modalities that reactivate the stalled anti-tumor immune response. © 2001 Wiley-Liss, Inc. [source]


    Bone Morphogenetic Protein 2 Induces Cyclo-oxygenase 2 in Osteoblasts via a Cbfa1 Binding Site: Role in Effects of Bone Morphogenetic Protein 2 In Vitro and In Vivo

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2005
    Daichi Chikazu
    Abstract We tested the hypothesis that induction of cyclo-oxygenase (COX) 2 mediates some effects of bone morphogenetic protein (BMP) 2 on bone. BMP-2 induced COX-2 mRNA and prostaglandin (PG) production in cultured osteoblasts. BMP-2 increased luciferase activity in calvarial osteoblasts from mice transgenic for a COX-2 promoter-luciferase reporter construct (Pluc) and in MC3T3-E1 cells transfected with Pluc. Deletion analysis identified the -300/-213-bp region of the COX-2 promoter as necessary for BMP-2 stimulation of luciferase activity. Mutation of core-binding factor activity 1 (muCbfa1) consensus sequence (5,-AACCACA-3,) at -267/-261 bp decreased BMP-2 stimulation of luciferase activity by 82%. Binding of nuclear proteins to an oligonucleotide spanning the Cbfa1 site was inhibited or supershifted by specific antibodies to Cbfa1. In cultured osteoblasts from calvariae of COX-2 knockout (-/-) and wild-type (+/+) mice, the absence of COX-2 expression reduced the BMP-2 stimulation of both ALP activity and osteocalcin mRNA expression. In cultured marrow cells flushed from long bones, BMP-2 induced osteoclast formation in cells from COX-2+/+ mice but not in cells from COX-2,/, mice. In vivo, BMP-2 (10 ,g/pellet) induced mineralization in pellets of lyophilized collagen implanted in the flanks of mice. Mineralization of pellets, measured by microcomputed tomography (,CT), was decreased by 78% in COX-2,/, mice compared with COX-2+/+ mice. We conclude that BMP-2 transcriptionally induces COX-2 in osteoblasts via a Cbfa1 binding site and that the BMP-2 induction of COX-2 can contribute to effects of BMP-2 on osteoblastic differentiation and osteoclast formation in vitro and to the BMP-2 stimulation of ectopic bone formation in vivo. [source]


    Fluid Flow Induction of Cyclo-Oxygenase 2 Gene Expression in Osteoblasts Is Dependent on an Extracellular Signal-Regulated Kinase Signaling Pathway,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2002
    Sunil Wadhwa
    Abstract Mechanical loading of bone may be transmitted to osteocytes and osteoblasts via shear stresses at cell surfaces generated by the flow of interstitial fluid. The stimulated production of prostaglandins, which mediates some effects of mechanical loading on bone, is dependent on inducible cyclo-oxygenase 2 (COX-2) in bone cells. We examined the fluid shear stress (FSS) induction of COX-2 gene expression in immortalized MC3T3-E1 osteoblastic cells stably transfected with ,371/+70 base pairs (bp) of the COX-2 5,-flanking DNA (Pluc371) and in primary osteoblasts (POBs) from calvaria of mice transgenic for Pluc371. Cells were plated on collagen-coated glass slides and subjected to steady laminar FSS in a parallel plate flow chamber. FSS, from 0.14 to10 dynes/cm2, induced COX-2 messenger RNA (mRNA) and protein. FSS (10 dynes/cm2) induced COX-2 mRNA within 30 minutes, with peak effects at 4 h in MC3T3-E1 cells and at ,8 h in POBs. An inhibitor of new protein synthesis puromycin blocked the peak induction of COX-2 mRNA by FSS. COX-2 promoter activity, measured as luciferase activity, correlated with COX-2 mRNA expression in both MC3T3-E1 and POB cells. FSS induced phosphorylation of extracellular signal-regulated kinase (ERK) in MC3T3-E1 cells, with peak effects at 5 minutes. Inhibiting ERK phosphorylation with the specific inhibitor PD98059 inhibited FSS induction of COX-2 mRNA by 55-70% and FSS stimulation of luciferase activity by ,80% in both MC3T3-E1 and POB cells. We conclude that FSS transcriptionally induces COX-2 gene expression in osteoblasts, that the maximum induction requires new protein synthesis, and that induction occurs largely via an ERK signaling pathway. [source]


    Disruption of FRNK expression by gene targeting of the intronic promoter within the focal adhesion kinase gene

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2007
    Haruko Hayasaka
    Abstract FRNK, a non-catalytic variant of focal adhesion kinase (FAK), is expressed in major blood vessels throughout mouse development and is postulated to play a role in regulating cell adhesion and signaling in vascular smooth muscle cells (VSMCs). The FRNK transcriptional start site lies within an intron of the FAK gene, suggesting that the FRNK gene is a "gene within a gene". Here, we identified a 1 kb intronic sequence of the FAK gene that is necessary for endogenous FRNK expression. Deletion of this sequence in gene-targeted mice abolished FRNK expression, showing the direct involvement of the FAK intron in the regulation of FRNK expression. The level of FAK expression was normal in the FRNK-deficient mice, indicating that FAK and FRNK are transcriptionally regulated by distinct promoters. The FRNK-deficient mice were viable, fertile, and displayed no obvious histological abnormalities in any of the major blood vessels. Western blot analysis showed that FRNK,deficient and wild-type (WT) cells had comparable levels of steady-state and adhesion-dependent FAK autophosphorylation. Despite the fact that ectopic expression of FRNK suppresses focal adhesion formation in cultured cells, these results suggest that endogenous FRNK is not essential for development or the formation of the mouse vasculature. J. Cell. Biochem. 102: 947,954, 2007. © 2007 Wiley-Liss, Inc. [source]


    Retinoic acid regulates the expression of PBX1, PBX2, and PBX3 in P19 cells both transcriptionally and post-translationally

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2004
    Pu Qin
    Abstract Pre-B cell leukemia transcription factors (PBXs) are important co-factors for the transcriptional regulation mediated by a number of Hox proteins during embryonic development. It was previously shown that the expression of several Pbx genes is elevated in mouse embryo limb buds and embryonal carcinoma P19 cells upon retinoic acid (RA) treatment although the mechanism of this induction is not well understood. In this report, we demonstrate that PBX1a, PBX1b, PBX2, and PBX3 mRNAs and PBX1/2/3 proteins are induced during endodermal and neuronal differentiation of P19 cells in a RAR-dependent subtype-unspecific manner following RA treatment. The increases in both PBX1 mRNA and PBX3 mRNA levels are secondary responses to RA treatment requiring new proteins synthesis while the increase in PBX2 mRNA is a primary response. The RA-dependent increases in PBX1 mRNA, PBX2 mRNA, and PBX3 mRNA levels are likely to be transcriptionally regulated since the stability of these mRNAs does not change. In addition, the half-lives of PBX1/2/3 proteins are significantly extended by RA treatment. Two possible mechanisms could contribute to the stabilization of PBX proteins: PBX proteins associate with RA-dependent increased levels of MEIS proteins, and RA may decrease the proteasome dependent degradation of PBX proteins. © 2004 Wiley-Liss, Inc. [source]


    TGF-, induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2008
    Charlotte Tacheau
    One of the shared physiological roles between TGF-, and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-,1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-,1 plays a key role in the control of NMuMG cells proliferation by TGF-,1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-,1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-,1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-,1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-,1-induced Cx43 gene expression. J. Cell. Physiol. 217: 759,768, 2008. © 2008 Wiley-Liss, Inc. [source]


    BRD7, a novel bromodomain gene, inhibits G1,S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2004
    Jie Zhou
    Bromodomain is a 110 amino acid domain. It is evolutionally conserved and is found in proteins strongly implicated in signal-dependent transcriptional regulation. BRD7 is a novel bromodomain gene and it is downexpressed in nasopharyngeal carcinoma (NPC) biopsies and cell lines; its function is poorly understood. In the present study, tet-on inducible expression system was used to investigate the role of BRD7 in cell growth and cell cycle progression. We found that ectopic expression of BRD7 in NPC cells inhibited cell growth and cell cycle progression from G1 to S. We further performed cell cycle cDNA array to screen potential transcriptional targets of BRD7 in cell cycle. Thirteen important signaling molecules, mainly implicated in ras/MEK/ERK and Rb/E2F pathways, were differentially expressed by induction of BRD7. Moreover, we observed that BRD7 could regulate the promoter activity of E2F3, one of its targets. Taken together, the present study indicated that BRD7 inhibited G1,S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways and suggested that BRD7 may present a promising candidate of NPCÔ associated tumor suppressor gene. © 2004 Wiley-Liss, Inc. [source]


    Activity of the matrix metalloproteinase-9 promoter in human normal and tumor cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2004
    Cristina Morelli
    Matrix metalloproteinases (MMPs) belong to a family of proteins essential for those processes involving extracellular matrix degradation, such as embryonic development, morphogenesis, and tissue resorption and remodeling. Some members of this family play a crucial role also in tumor invasion. Most notably, MMP-9 is expressed in invasive tumors, and represents a key protein in brain tumor progression, whereas it is not expressed in adult normal tissues. The expression of the MMP-9, like other members of the family, is transcriptionally regulated. We, therefore, postulated that the MMP-9 promoter could be useful in driving selective expression of exogenous genes in tumor cells. This represents a key feature for gene therapy applications, since currently employed viral promoters induce severe organ toxicity, limiting the clinical benefits. In this study, we investigated the activity of the MMP-9 promoter in driving exogenous gene expression in human cell lines. High levels of reporter gene expression were detected in tumor derived cell lines, whereas the MMP-9 promoter activity in non-tumor cells was negligible. Furthermore, we show that tumor necrosis factor alpha (TNF,) is able to enhance considerably the MMP-9 promoter activity only in tumor cells. Since recent studies have indicated that MMP-9 enzymatic activity is detectable in the blood, it would be possible to screen potential responsive patients for a tumor gene therapy approach based on the MMP-9 promoter. Taken together these data suggest that MMP-9 promoter has the characteristics for transcritpionally targeted and inducible gene therapy applications. J. Cell. Physiol. 199: 126,133, 2004© 2003 Wiley-Liss, Inc. [source]


    Retinoic acid induces expression of the interleukin-1, gene in cultured normal human mammary epithelial cells and in human breast carcinoma lines

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2002
    Limin Liu
    Retinoic acid (RA) and its derivatives inhibit the proliferation of normal human mammary epithelial cells (HMEC) and some breast carcinoma lines by mechanisms which are not fully understood. To identify genes that mediate RA-induced cell growth arrest, an HMEC cDNA library was synthesized and subtractive screening was performed. We identified the interleukin-1, (IL-1,) gene as an RA induced gene in HMEC. Northern blot analyses showed that the IL-1, gene was up-regulated as early as 2 h after RA treatment. Results from the treatment of HMEC with cycloheximide and actinomycin D indicated that the regulation of the IL-1, gene by RA occurred at the transcriptional level and that the IL-1, gene is a direct, downstream target gene of RA. To evaluate the effects of IL-1, on cell proliferation, the proliferation of HMEC was measured in the presence of RA or IL-1,, or both. Either RA or IL-1, could significantly inhibit the proliferation of HMEC. However, the addition of soluble IL-1 receptor antagonist (sIL-1ra) to the cell culture medium did not block RA-induced HMEC growth inhibition, whereas sIL-1ra did block the growth inhibition of HMEC by IL-1,. IL-1, expression was not observed in the three carcinoma cell lines, MCF-7, MDA-MB-231, and MDA-MB-468, as compared to the HMEC. Growth curves of the breast carcinoma cell lines showed strong inhibitory effects of RA and IL-1, on the growth of the estrogen receptor (ER) positive MCF-7 cell line, but only a small effect on the ER negative MDA-MB-231 cells. The expression of the IL-1, gene was also transcriptionally activated by RA in normal epithelial cells of prostate and oral cavity. Our results suggest that: (a) the IL-1, gene is a primary target of RA receptors in HMEC; (b) the enhanced expression of the IL-1, gene does not mediate the RA-induced growth arrest of HMEC; and (c) the expression of the IL-1, gene is low or absent in all three human breast carcinoma cell lines examined, but the defect in the IL-1, signaling pathway may be different in ER positive versus ER negative carcinoma cells. © 2002 Wiley-Liss, Inc. [source]


    Divergent modulation of iron regulatory proteins and ferritin biosynthesis by hypoxia/reoxygenation in neurones and glial cells

    JOURNAL OF NEUROCHEMISTRY, Issue 5 2005
    Carlo Irace
    Abstract Ferritin, the main iron storage protein, exerts a cytoprotective effect against the iron-catalyzed production of reactive oxygen species, but its role in brain injury caused by hypoxia/reoxygenation is unclear. Ferritin expression is regulated mainly at post-transcriptional level by iron regulatory proteins (IRP1 and IRP2) that bind specific RNA sequences (IREs) in the 5,untranslated region of ferritin mRNA. Here, we show that hypoxia decreases IRP1 binding activity in glial cells and enhances it in cortical neurons. These effects were reversed by reoxygenation in both cell types. In glial cells there was an early increase of ferritin synthesis during hypoxia and reoxygenation. Conversely, in cortical neurons, ferritin synthesis increased during the late phase of reoxygenation. Steady-state analysis of ferritin mRNA levels suggested that ferritin synthesis is regulated mainly post-transcriptionally by IRPs in glioma cells, both transcriptionally and post-transcriptionally in type-1 astrocytes, and mainly at transcriptional level in an IRP-independent way in neurons. The different regulation of ferritin expression may account for the different vulnerability of neurons and glial cells to the injury elicited by oxygen and glucose deprivation (OGD)/reoxygenation. The greater vulnerability of cortical neurons to hypoxia-reoxygenation was strongly attenuated by the exogenous administration of ferritin during OGD/reoxygenation, suggesting the possible cytoprotective role exerted by this iron-segregating protein. [source]


    Synaptic mRNAs are modulated by learning

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2009
    Eugenia Ferrara
    Abstract We have recently demonstrated that brain plastic events significantly modify synaptic protein synthesis measured by the incorporation of [35S]methionine in brain synaptosomal proteins. Notably, in rats learning a two-way active avoidance task, the local synthesis of two synaptic proteins was selectively enhanced. Because this effect may be attributed to transcriptional modulation, we used reverse transcriptase,polymerase chain reaction methods to determine the content of discrete synaptosomal mRNAs in rats exposed to the same training protocol. Correlative analyses between behavioral responses and synaptosomal mRNA content showed that GAT-1 mRNA (a prevalent presynaptic component) correlates with avoidances and escapes in rat cerebellum, while glial fibrillary acid protein mRNA (an astrocytic component) correlates with freezings in cerebellum and cerebral cortex. These observations support the hypothesis that synaptic protein synthesis may be transcriptionally regulated. The cellular origin of synaptic transcripts is briefly discussed, with special regard to those present at large distances from neuron somas. © 2009 Wiley-Liss, Inc. [source]


    THE CONNEXIN 32 NERVE-SPECIFIC PROMOTER IS DIRECTLY ACTIVATED BY Egr2/Krox20 IN HeLa CELLS

    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2002
    M. Musso
    Connexin 32 (Cx32) belongs to a protein family that forms intercellular channels mediating the exchange of ions and chemical messengers. In the peripheral nervous system (PNS) Cx32 is expressed in Schwann cells and contributes to the homeostasis and structural integrity of myelin. Mutations of this gene determine X-linked form of Charcot Marie-Tooth (CMTX) disease. Cx 32 is transcriptionally regulated in a tissue-specific manner by two different promoters termed P1 and P2. P2, active in Schwann cells, is located 5 kb downstream from the P1 promoter and at 500 bp from the exon 2 that contains the entire coding region. Previously, by Electrophoretical Mobility Shift Assay (EMSA) we have identified a sequence (-101/-93), within P2, specifically recognized by recombinant Egr2. In order to prove the direct involvement of Egr2 in the transcriptional control of the Cx32 gene, we have performed transfection experiments in HeLa cells with a luciferase driven by the P2 promoter in presence or not of a vector expressing Krox20, the mouse homologue of human Egr2. We have found that the construct in which the sequence -103/-93 is mutated is not activated as well as the wild type sequence. Moreover we have detected another upstream sequence (-236/-213) recognized by recombinant Egr2 and other transcription factors present in HeLa nuclear extract like SP1. The construct, lacking this sequence and carrying the mutated downstream Egr2 recognition sequence, is not activated at all by Krox20. Taken together these findings strongly suggest the role of Egr2 in the transcriptional control of Connexin 32 through both sequences. The laboratory is a member of the European CMT Consortium; partially granted by Ministero della Sanit, to PM, MURST and Ateneo to FA. [source]


    The Role of K+ Channels in Determining Pulmonary Vascular Tone, Oxygen Sensing, Cell Proliferation, and Apoptosis: Implications in Hypoxic Pulmonary Vasoconstriction and Pulmonary Arterial Hypertension

    MICROCIRCULATION, Issue 8 2006
    ROHIT MOUDGIL
    ABSTRACT Potassium channels are tetrameric, membrane-spanning proteins that selectively conduct K+ at near diffusion-limited rates. Their remarkable ionic selectivity results from a highly-conserved K+ recognition sequence in the pore. The classical function of K+ channels is regulation of membrane potential (EM) and thence vascular tone. In pulmonary artery smooth muscle cells (PASMC), tonic K+ egress, driven by a 145/5 mM intracellular/extracellular concentration gradient, contributes to a EM of about ,60 mV. It has been recently discovered that K+ channels also participate in vascular remodeling by regulating cell proliferation and apoptosis. PASMC express voltage-gated (Kv), inward rectifier (Kir), calcium-sensitive (KCa), and two-pore (K2P) channels. Certain K+ channels are subject to rapid redox regulation by reactive oxygen species (ROS) derived from the PASMC's oxygen-sensor (mitochondria and/or NADPH oxidase). Acute hypoxic inhibition of ROS production inhibits Kv1.5, which depolarizes EM, opens voltage-sensitive, L-type calcium channels, elevates cytosolic calcium, and initiates hypoxic pulmonary vasoconstriction (HPV). Hypoxia-inhibited K+ currents are not seen in systemic arterial SMCs. Kv expression is also transcriptionally regulated by HIF-1, and NFAT. Loss of PASMC Kv1.5 and Kv2.1 contributes to the pathogenesis of pulmonary arterial hypertension (PAH) by causing a sustained depolarization, which increases intracellular calcium and K+, thereby stimulating cell proliferation and inhibiting apoptosis, respectively. Restoring Kv expression (via Kv1.5 gene therapy, dichloroacetate, or anti-survivin therapy) reduces experimental PAH. Electrophysiological diversity exists within the pulmonary circulation. Resistance PASMC have a homogeneous Kv current (including an oxygen-sensitive component), whereas conduit PASMC current is a Kv/KCa mosaic. This reflects regional differences in expression of channel isoforms, heterotetramers, splice variants, and regulatory subunits as well as mitochondrial diversity. In conclusion, K+ channels regulate pulmonary vascular tone and remodeling and constitute potential therapeutic targets in the regression of PAH. [source]


    Sigma factor selectivity in Borrelia burgdorferi: RpoS recognition of the ospE/ospF/elp promoters is dependent on the sequence of the ,10 region

    MOLECULAR MICROBIOLOGY, Issue 6 2006
    Christian H. Eggers
    Summary Members of the ospE/ospF/elp lipoprotein gene families of Borrelia burgdorferi, the Lyme disease agent, are transcriptionally upregulated in response to the influx of blood into the midgut of an infected tick. We recently have demonstrated that despite the high degree of similarity between the promoters of the ospF (PospF) and ospE (PospE) genes of B. burgdorferi strain 297, the differential expression of ospF is RpoS-dependent, while ospE is controlled by ,70. Herein we used wild-type and RpoS-deficient strains of B. burgdorferi and Escherichia coli to analyse transcriptional reporters consisting of a green fluorescent protein (gfp) gene fused to PospF, PospE, or two hybrid promoters in which the ,10 regions of PospF and PospE were switched [PospF (E , 10) and PospE,(F , 10) respectively]. We found that the PospF,10 region is both necessary and sufficient for RpoS-dependent recognition in B. burgdorferi, while ,70 specificity for PospE is dependent on elements outside of the ,10 region. In E. coli, sigma factor selectivity for these promoters was much more permissive, with expression of each being primarily due to ,70. Alignment of the sequences upstream of each of the ospE/ospF/elp genes from B. burgdorferi strains 297 and B31 revealed that two B31 ospF paralogues [erpK (BBM38) and erpL (BBO39)] have ,10 regions virtually identical to that of PospF. Correspondingly, expression of gfp reporters based on the erpK and erpL promoters was RpoS-dependent. Thus, the sequence of the PospF,10 region appears to serve as a motif for RpoS recognition, the first described for any B. burgdorferi promoter. Taken together, our data support the notion that B. burgdorferi utilizes sequence differences at the ,10 region as one mechanism for maintaining the transcriptional integrity of RpoS-dependent and -independent genes activated at the onset of tick feeding. [source]


    Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortus

    MOLECULAR MICROBIOLOGY, Issue 4 2002
    Anne-Flore Bellefontaine
    Summary CtrA is a master response regulator found in many alpha-proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the ,2 -proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6,CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles. [source]