Home About us Contact | |||
Transcriptional Gene Silencing (transcriptional + gene_silencing)
Selected AbstractsLocal DNA features affect RNA-directed transcriptional gene silencing and DNA methylationTHE PLANT JOURNAL, Issue 1 2008Ute Fischer Summary Transcription of a nopaline synthase promoter (pNOS) inverted repeat provides an RNA signal that can trigger transcriptional gene silencing and methylation of pNOS promoters in trans. The degree of silencing is influenced by the local DNA features close to the target promoter integration sites. Among 26 transgenic Arabidopsis thaliana lines harbouring single copies of a T-DNA including a pNOS- NPTII reporter gene at different chromosomal loci, NPTII RNA levels showed limited variation. When challenged by the silencer transgene providing the pNOS RNA signal, reduction of the NPTII RNA levels in the F1 generation varied by more than 100-fold, ranging from no reduction to reduction to <1% of the non-silenced level. Silencing was generally correlated with proportional DNA methylation in the pNOS region, except for one target transgene showing substantial DNA methylation without adequate silencing. Silencing was progressive through generations. Differences in the degree of silencing among the target transgenes were transmitted at least to the F3 generation, and seemed to be influenced by transgene-flanking sequences. Apparently, close-by repeats promoted, whereas close-by functional genes diminished, the response to the silencing signal. [source] Consistent transcriptional silencing of 35S-driven transgenes in gentianTHE PLANT JOURNAL, Issue 4 2005Kei-ichiro Mishiba Summary In this study, no transgenic gentian (Gentiana triflora × Gentiana scabra) plants produced via Agrobacterium -mediated transformation exhibited transgene (GtMADS, gentian-derived MADS-box genes or sGFP, green fluorescent protein) expression in their leaf tissues, despite the use of constitutive Cauliflower mosaic virus (CaMV) 35S promoter. Strikingly, no expression of the selectable marker gene (bar) used for bialaphos selection was observed. To investigate the possible cause of this drastic transgene silencing, methylation-specific sequences were analysed by bisulfite genomic sequencing using tobacco transformants as a control. Highly methylated cytosine residues of CpG and CpWpG (W contains A or T) sites were distinctively detected in the promoter and 5, coding regions of the transgenes 35S- bar and 35S- GtMADS in all gentian lines analysed. These lines also exhibited various degrees of cytosine methylation in asymmetrical sequences. The methylation frequencies in the other transgene, nopaline synthase (NOS) promoter-driven nptII, and the endogenous GtMADS gene coding region, were much lower and were variable compared with those in the 35S promoter regions. Transgene methylation was observed in the bialaphos-selected transgenic calluses expressing the transgenes, and methylation sequences were distributed preferentially around the as-1 element in the 35S promoter. Calluses derived from leaf tissues of silenced transgenic gentian also exhibited transgene suppression, but expression was recovered by treatment with the methylation inhibitor 5-aza-2,-deoxycytidine (aza-dC). These results indicated that cytosine methylation occurs exclusively in the 35S promoter regions of the expressed transgenes during selection of gentian transformants, causing transcriptional gene silencing. [source] Global analysis of siRNA-mediated transcriptional gene silencingBIOESSAYS, Issue 12 2005Harsh H. Kavi The RNAi machinery is not only involved with post-transcriptional degradation of messenger RNAs, but also used for targeting of chromatin changes associated with transcriptional silencing. Two recent papers determine the global patterns of gene expression and chromatin modifications produced by the RNAi machinery in fission yeast.(9, 10) The major sites include the outer centromere repeats, the mating-type locus and subtelomeric regions. By comparison, studies of Arabidopsis heterochromatin also implicate transposons as a major target for silencing. Analyses of siRNA libraries from Drosophila, nematodes and Arabidopsis indicate that major repeats at centromeres, telomeres and transposable elements are likely targets of RNAi. Also, intergenic regions are implicated as targets in Arabidopsis. BioEssays 27:1209,1212, 2005. © 2005 Wiley Periodicals, Inc. [source] |