Transcriptional Factors (transcriptional + factor)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Up-Regulation of OsBIHD1, a Rice Gene Encoding BELL Homeodomain Transcriptional Factor, in Disease Resistance Responses

PLANT BIOLOGY, Issue 5 2005
H. Luo
Abstract: In the present study, we cloned and identified a full-length cDNA of a rice gene, OsBIHD1, encoding a homeodomain type transcriptional factor. OsBIHD1 is predicted to encode a 642 amino acid protein and the deduced protein sequence of OsBIHD1 contains all conserved domains, a homeodomain, a BELL domain, a SKY box, and a VSLTLGL box, which are characteristics of the BELL type homedomain proteins. The recombinant OsBIHD1 protein expressed in Escherichia coli bound to the TGTCA motif that is the characteristic cis -element DNA sequence of the homeodomain transcriptional factors. Subcellular localization analysis revealed that the OsBIHD1 protein localized in the nucleus of the plant cells. The OsBIHD1 gene was mapped to chromosome 3 of the rice genome and is a single-copy gene with four exons and three introns. Northern blot analysis showed that expression of OsBIHD1 was activated upon treatment with benzothiadiazole (BTH), which is capable of inducing disease resistance. Expression of OsBIHD1 was also up-regulated rapidly during the first 6 h after inoculation with Magnaporthe grisea in BTH-treated rice seedlings and during the incompatible interaction between M. grisea and a resistant genotype. These results suggest that OsBIHD1 is a BELL type of homeodomain transcription factor present in the nucleus, whose induction is associated with resistance response in rice. [source]


Promoter analysis of ventricular myosin heavy chain (vmhc) in zebrafish embryos

DEVELOPMENTAL DYNAMICS, Issue 7 2009
Daqing Jin
Abstract In zebrafish, ventricular myosin heavy chain (vmhc) gene is initially expressed at the anterior lateral mesoderm and thereafter its expression is restricted to the cardiac ventricle. The transcriptional control mechanisms in regulating chamber-specific expression of myosin heavy chains are not well defined. We isolated and analyzed zebrafish vmhc upstream region to examine the spatial and temporal regulation of vmhc using transgenic and transient expression techniques. Promoter deletion analyses defined a basal promoter region sufficient to drive vmhc expression in the ventricle and an upstream fragment necessary for repressing ectopic vmhc expression in the atrium. The transcriptional mechanism that prevents vmhc expression in the atrium is mediated through Nkx2.5 binding elements (NKE). We have further discovered that paired-related homeobox transcriptional factor 2 (Prx2/S8)-like binding elements are required for promoting vmhc expression, and Prrx1b, a Prx-related homeobox protein, participates in the regulation of vmhc expression with other transcriptional factors. Developmental Dynamics 238:1760,1767, 2009. © 2009 Wiley-Liss, Inc. [source]


Vitamin C attenuates ERK signalling to inhibit the regulation of collagen production by LL-37 in human dermal fibroblasts

EXPERIMENTAL DERMATOLOGY, Issue 8 2010
Hyun Jeong Park
Please cite this paper as: Vitamin C attenuates ERK signalling to inhibit the regulation of collagen production by LL-37 in human dermal fibroblasts. Experimental Dermatology 2010; 19: e258,e264. Abstract:, Vitamin C is used as an anti-ageing agent because of its collagen enhancing effects. The precise cellular signalling mechanism of vitamin C is not well known. Here, we investigate the profibrotic mechanism of vitamin C against LL-37. Antimicrobial peptide LL-37 decreases collagen expression at mRNA and protein levels in human dermal fibroblasts (HDFs). The ability of LL-37 to inhibit collagen expression is dependent on phosphorylation of extracellular signal-regulated kinase (ERK). HDFs and human keloid fibroblasts were treated with vitamin C followed by 2 h of LL-37 treatment. Collagen mRNA expression and total soluble collagen production inhibited by LL-37 was enhanced by treatment with 0.5 mm vitamin C. Vitamin C also decreased intracellular reactive oxygen intermediates (ROI) levels that were increased by LL-37. Furthermore, the phosphorylation of ERK was analysed by Western blot following treatment with vitamin C and LL-37. Vitamin C turned off phosphorylation of ERK that was induced by LL-37. Ets-1 transcriptional factor, which is involved in the regulation of collagen expression by LL-37, was also inhibited by vitamin C. This study shows that vitamin C enhances collagen production by inhibiting the ERK pathway induced by LL-37. [source]


Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4,AKT,ATP-binding cassette G2 pathway,

HEPATOLOGY, Issue 2 2010
Xiao Qi Wang
Chemoresistance presents a major obstacle to the efficacy of chemotherapeutic treatment of cancers. Using chemotherapeutic drugs to select drug-resistant cancer cells in hepatocellular carcinoma (HCC) and several other cancer cell lines, we demonstrate that chemoresistant cells displayed cancer stem cell features, such as increased self-renewal ability, cell motility, multiple drug resistance, and tumorigenicity. Octamer 4 (Oct4) messenger RNA (mRNA) levels were dramatically increased in chemoresistant cancer cells due to DNA demethylation regulation of Oct4. By functional study, Oct4 overexpression enhanced whereas Oct4 knockdown reduced liver cancer cell resistance to chemotherapeutic drugs in vitro and in xenograft tumors. It is known that the Oct4-TCL1-AKT pathway acts on embryonic stem cells and cancer stem cells in cell proliferation through inhibition of apoptosis. We further demonstrate that Oct4 overexpression induced activation of TCL1, AKT, and ABCG2 to mediate chemoresistance, which can be overcome by addition of the PI3K/AKT inhibitor; therefore, a direct pathway of Oct4-TCL1-AKT-ABCG2 or a combination of Oct4-TCL1-AKT with the AKT-ABCG2 pathway could be a potential new mechanism involved in liver cancer cell chemoresistance. Moreover, the clinical significance of the Oct4-AKT-ABCG2 pathway can be demonstrated in HCC patients, with a strong correlation of expression patterns in human HCC tumors. The role of the Oct4-AKT-ABCG2 axis in cancer cell chemoresistant machinery suggests that AKT pathway inhibition (PI3K inhibitors) not only inhibits cancer cell proliferation, but may also enhance chemosensitivity by target potential chemoresistant cells. Conclusion: Oct4, a transcriptional factor of pluripotent cells, can mediate chemoresistance through a potential Oct4-AKT-ABCG2 pathway. (HEPATOLOGY 2010;) [source]


Foxf1 +/, mice exhibit defective stellate cell activation and abnormal liver regeneration following CCl4 injury

HEPATOLOGY, Issue 1 2003
Vladimir V. Kalinichenko
Previous studies have shown that haploinsufficiency of the splanchnic and septum transversum mesoderm Forkhead Box (Fox) f1 transcriptional factor caused defects in lung and gallbladder development and that Foxf1 heterozygous (+/,) mice exhibited defective lung repair in response to injury. In this study, we show that Foxf1 is expressed in hepatic stellate cells in developing and adult liver, suggesting that a subset of stellate cells originates from septum transversum mesenchyme during mouse embryonic development. Because liver regeneration requires a transient differentiation of stellate cells into myofibroblasts, which secrete type I collagen into the extracellular matrix, we examined Foxf1 +/, liver repair following carbon tetrachloride injury, a known model for stellate cell activation. We found that regenerating Foxf1 +/, liver exhibited defective stellate cell activation following CCl4 liver injury, which was associated with diminished induction of type I collagen, ,,smooth muscle actin, and Notch-2 protein and resulted in severe hepatic apoptosis despite normal cellular proliferation rates. Furthermore, regenerating Foxf1 +/, livers exhibited decreased levels of interferon-inducible protein 10 (IP-10), delayed induction of monocyte chemoattractant protein 1 (MCP-1) levels, and aberrantly elevated expression of transforming growth factor ,1. In conclusion, Foxf1 +/, mice exhibited abnormal liver repair, diminished activation of hepatic stellate cells, and increased pericentral hepatic apoptosis following CCl4 injury. [source]


Immortalized cell lines from mouse xiphisternum preserve chondrocyte phenotype

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2006
Manas K. Majumdar
Chondrocytes are unique to cartilage and the study of these cells in vitro is important for advancing our understanding of the role of these cells in normal homeostasis and disease including osteoarthritis (OA). As there are limitations to the culture of primary chondrocytes, cell lines have been developed to overcome some of these obstacles. In this study, we developed a procedure to immortalize and characterize chondrocyte cell lines from mouse xiphisternum. The cells displayed a polygonal to fibroblastic morphology in monolayer culture. Gene expression studies using quantitative PCR showed that the cell lines responded to bone morphogenetic protein 2 (BMP-2) by increased expression of matrix molecules, aggrecan, and type II collagen together with transcriptional factor, Sox9. Stimulation by IL-1 results in the increased expression of catabolic effectors including MMP-13, nitric oxide synthase, ADAMTS4, and ADAMTS5. Cells cultured in alginate responded to BMP-2 by increased synthesis of proteoglycan (PG), a major matrix molecule of cartilage. IL-1 treatment of cells in alginate results in increased release of PG into the conditioned media. Further analysis of the media showed the presence of Aggrecanase-cleaved aggrecan fragments, a signature of matrix degradation. These results show that the xiphisternum chondrocyte cell lines preserve their chondrocyte phenotype cultured in either monolayer or 3-dimensional alginate bead culture systems. In summary, this study describes the establishment of chondrocyte cell lines from the mouse xiphisternum that may be useful as a surrogate model system to understand chondrocyte biology and to shed light on the underlying mechanism of pathogenesis in OA. J. Cell. Physiol. 209: 551,559, 2006. © 2006 Wiley-Liss, Inc. [source]


Trade-offs between longevity and pathogen resistance in Drosophila melanogaster are mediated by NF,B signaling

AGING CELL, Issue 6 2006
Sergiy Libert
Summary The innate immune response protects numerous organisms, including humans, from the universe of pathogenic molecules, viruses and micro-organisms. Despite its role in promoting pathogen resistance, inappropriate activation and expression of NF,B and other immunity-related effector molecules can lead to cancer, inflammation, and other diseases of aging. Understanding the mechanisms leading to immune system activation as well as the short- and long-term consequences of such activation on health and lifespan is therefore critical for the development of beneficial immuno-modulating and longevity-promoting interventions. Mechanisms of innate immunity are highly conserved across species, and we take advantage of genetic tools in the model organism, Drosophila melanogaster, to study the effects of acute and chronic activation of immunity pathways on pathogen resistance and general fitness of adult flies. Our findings indicate that fat body specific overexpression of a putative pathogen recognition molecule, peptidoglycan recognition protein (PGRP-LE), is sufficient for constitutive up-regulation of the immune response and for enhanced pathogen resistance. Primary components of fitness are unaffected by acute activation, but chronic activation leads to an inflammatory state and reduced lifespan. These phenotypes are dependent on the NF,B-related transcriptional factor, Relish, and they establish a mechanistic basis for a link between immunity, inflammation, and longevity. [source]


Transcriptionally mediated inhibition of telomerase of fungal immunomodulatory protein from Ganoderma tsugae in A549 human lung adenocarcinoma cell line

MOLECULAR CARCINOGENESIS, Issue 4 2006
Chien-Huang Liao
Abstract Telomerase expression is the hallmark of tumor cells, and activation of this ribonucleoprotein complex may be a rate-limiting or critical step in cellular immortalization and oncogenesis. Fungal immunomodulatory protein, FIP-gts, has been isolated from Ganoderma tsugae. In the present study, we expressed and purified the recombinant fungal immunomodulatory protein reFIP-gts in E. coli. We found that reFIP-gts significantly and selectively inhibits the growth of A549 cancer cells while not affecting the growth of normal MRC-5 fibroblasts. The reFIP-gts suppression of telomerase activity is concentration-dependent, due to the downregulation of the telomerase catalytic subunit (hTERT). It also happens at the mRNA level. These results were confirmed by transient transfections of A549 cells with pGL3-Basic plasmid constructs containing the functional hTERT promoter and its E-box-deleted sequences cloned upstream of a luciferase reporter gene. With electrophoretic mobility shift assays and Western blotting, we demonstrated that in response to reFIP-gts, binding of c- myc transcriptional factor to the E-box sequence on the hTERT promoter is inhibited. These results show that reFIP-gts suppresses telomerase activity and inhibits transcriptional regulation of hTERT via a c- myc -responsive element-dependent mechanism. Our findings provide new insight into both the anticancer function of reFIP-gts and the regulation of hTERT/telomerase expression, which may be valuable in the development of a promising chemopreventive agent. © 2006 Wiley-Liss, Inc. [source]


Anti-wrinkling effects of the mixture of vitamin C, vitamin E, pycnogenol and evening primrose oil, and molecular mechanisms on hairless mouse skin caused by chronic ultraviolet B irradiation

PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 5 2007
Ho-Song Cho
Background: Naturally occurring antioxidants were used to regulate the skin damage caused by ultraviolet (UV) radiation because several antioxidants have demonstrated that they can inhibit wrinkle formation through prevention of matrix metalloproteinases (MMPs) and/or increase of collagen synthesis. Objective: We examined the effect of oral administration of the antioxidant mixture of vitamin C, vitamin E, pycnogenol, and evening primrose oil on UVB-induced wrinkle formation. In addition, we investigated the possible molecular mechanism of photoprotection against UVB through inhibition of collagen-degrading MMP activity or through enhancement of procollagen synthesis in mouse dorsal skin. Methods: Female SKH-1 hairless mice were orally administrated the antioxidant mixture (test group) or vehicle (control group) for 10 weeks with UVB irradiation three times a week. The intensity of irradiation was gradually increased from 30 to 180 mJ/cm2. Microtopographic and histological assessment of the dorsal skins was carried out at the end of 10 weeks to evaluate wrinkle formation. Western blot analysis and EMSA were also carried out to investigate the changes in the balance of collagen synthesis and collagen degradation. Results: Our antioxidant mixture significantly reduced UVB-induced wrinkle formation, accompanied by significant reduction of epidermal thickness, and UVB-induced hyperplasia, acanthosis, and hyperkeratosis. This antioxidant mixture significantly prevented the UVB-induced expressions of MMPs, mitogen-activated protein (MAP) kinase, and activation of activator protein (AP)-1 transcriptional factor in addition to enhanced type I procollagen and transforming growth factor-,2 (TGF-,2) expression. Conclusion: Oral administration of the antioxidant mixture significantly inhibited wrinkle formation caused by chronic UVB irradiation through significant inhibition of UVB-induced MMP activity accompanied by enhancement of collagen synthesis. [source]


Up-Regulation of OsBIHD1, a Rice Gene Encoding BELL Homeodomain Transcriptional Factor, in Disease Resistance Responses

PLANT BIOLOGY, Issue 5 2005
H. Luo
Abstract: In the present study, we cloned and identified a full-length cDNA of a rice gene, OsBIHD1, encoding a homeodomain type transcriptional factor. OsBIHD1 is predicted to encode a 642 amino acid protein and the deduced protein sequence of OsBIHD1 contains all conserved domains, a homeodomain, a BELL domain, a SKY box, and a VSLTLGL box, which are characteristics of the BELL type homedomain proteins. The recombinant OsBIHD1 protein expressed in Escherichia coli bound to the TGTCA motif that is the characteristic cis -element DNA sequence of the homeodomain transcriptional factors. Subcellular localization analysis revealed that the OsBIHD1 protein localized in the nucleus of the plant cells. The OsBIHD1 gene was mapped to chromosome 3 of the rice genome and is a single-copy gene with four exons and three introns. Northern blot analysis showed that expression of OsBIHD1 was activated upon treatment with benzothiadiazole (BTH), which is capable of inducing disease resistance. Expression of OsBIHD1 was also up-regulated rapidly during the first 6 h after inoculation with Magnaporthe grisea in BTH-treated rice seedlings and during the incompatible interaction between M. grisea and a resistant genotype. These results suggest that OsBIHD1 is a BELL type of homeodomain transcription factor present in the nucleus, whose induction is associated with resistance response in rice. [source]


Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems

THE PLANT JOURNAL, Issue 6 2004
Kyonoshin Maruyama
Summary The transcriptional factor DREB/CBF (dehydration-responsive element/C-repeat-binding) specifically interacts with the dehydration-responsive element (DRE)/C-repeat (CRT) cis -acting element (A/GCCGAC) and controls the expression of many stress-inducible genes in Arabidopsis. Transgenic plants overexpressing DREB1A showed activated expression of many stress-inducible genes and improved tolerance to not only drought, salinity, and freezing but also growth retardation. We searched for downstream genes in transgenic plants overexpressing DREB1A using the full-length cDNA microarray and Affymetrix GeneChip array. We confirmed candidate genes selected by array analyses using RNA gel blot and identified 38 genes as the DREB1A downstream genes, including 20 unreported new downstream genes. Many of the products of these genes were proteins known to function against stress and were probably responsible for the stress tolerance of the transgenic plants. The downstream genes also included genes for protein factors involved in further regulation of signal transduction and gene expression in response to stress. The identified genes were classified into direct downstream genes of DREB1A and the others based on their expression patterns in response to cold stress. We also searched for conserved sequences in the promoter regions of the direct downstream genes and found A/GCCGACNT in their promoter regions from ,51 to ,450 as a consensus DRE. The recombinant DREB1A protein bound to A/GCCGACNT more efficiently than to A/GCCGACNA/G/C. [source]


ELL is an HIF-1, partner that regulates and responds to hypoxia response in PC3 cells

THE PROSTATE, Issue 7 2010
Lingqi Liu
Abstract BACKGROUND Eleven,nineteen lysine-rich leukemia (ELL) plays an important role in tumorigenesis and animal development. HIF-1 is a transcriptional factor that functions as a master regulator of O2 homeostasis. Our previous studies showed that a binding partner of ELL, U19/Eaf2, can modulate HIF-1, activity and hypoxia response, suggesting that ELL may also influence HIF-1, pathway and hypoxia response. METHODS Co-localization and co-immunoprecipitation were performed to test the interaction between ELL and HIF-1,. PC3 cells with stable ELL knockdown and PC3 cells with stable ELL overexpression, along with their controls, were established using lentiviral expression system. Western blot and real-time PCR were performed to test the effect of ELL on HIF-1, protein and its down-stream gene transcription. To elucidate potential effect of hypoxia on ELL, cell growth and colony formation assays were performed using PC3 subline with stable ELL overexpression. RESULTS ELL is associated with HIF-1, in transfected cells. In PC3 prostate cancer cells, ELL inhibited HIF-1, protein level and down-stream gene expression. As expected, ELL inhibited cell growth and colony formation under normoxia. Interestingly, the inhibition was alleviated under hypoxia. CONCLUSIONS Our findings suggest that ELL and HIF-1, are binding partners and can modulate the functions of each other in hypoxia. Prostate 70: 797,805, 2010. © 2010 Wiley-Liss, Inc. [source]


Preliminary crystallographic analysis of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-, receptor promoter DNA

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 12 2009
Vinod B. Agarkar
Ets proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Like other Ets-family members, Elf3 functions as a sequence-specific DNA-binding transcriptional factor. A mouse Elf3 C-terminal fragment (amino-acid residues 269,371) containing the DNA-binding domain has been crystallized in complex with mouse type II TGF-, receptor promoter (T,R-II) DNA. The crystals belonged to space group P212121, with unit-cell parameters a = 42.66, b = 52, c = 99.78,Ĺ, and diffracted to a resolution of 2.2,Ĺ. [source]


Hypoxia-inducible factor-1, contributes to hypoxia-induced chemoresistance in gastric cancer

CANCER SCIENCE, Issue 1 2008
Lili Liu
Hypoxia induced drug resistance is a major obstacle in the development of effective cancer therapy. Our previous study revealed that hypoxia-inducible factor-1 (HIF-1), the major transcriptional factor significantly activated by hypoxia, was overexpressed in gastric vincristine-resistant cells SGC7901/vincristine (VCR) under normoxic conditions, which suggested that it was associated with drug resistance in gastric cancer cells. In the present study, a colony-forming assay revealed that hypoxia and forced HIF-1, expression increased maximal ,8.9-fold or ,14.8-fold of IC50 toward vincristine in gastric cancer cell lines SGC7901 and SGC7901/VCR, respectively (P < 0.01). Annexin-V/propidium iodide staining analysis revealed hypoxia or forced HIF-1, expression reduced apoptosis by 24% or 18% in SGC7901 cells (P < 0.05). Flow cytometry analysis of intracellular adriamycin revealed that hypoxia and forced expression of HIF-1, increased ,1.79-fold or ,2.36-fold of the adriamycin releasing index, respectively (P < 0.05). However, resistance acquisition subject to hypoxia in vitro and in vivo was suppressed by blocking HIF-1, expression with siRNA. We further demonstrated that HIF-1 , overexpression showed a 1.85-fold increased expression of Bcl-2 and a 2.16-fold decreased expression of Bax, and also showed significantly induced expression of p-gp and MRP1, which indicated that HIF-1, may confer hypoxia-induced drug resistance via inhibition of drug-induced apoptosis and decreases in intracellular drug accumulation. (Cancer Sci 2008; 99: 121,128) [source]


CCAAT/enhancer binding protein-, promotes the survival of intravascular rat pancreatic tumor cells via antiapoptotic effects

CANCER SCIENCE, Issue 11 2007
Yasuhito Shimizu
A transcriptional factor, CCAAT/enhancer binding protein-, (C/EBP-,), regulates a variety of cell functions in normal and neoplastic cells. Although the involvement of C/EBP-, in metastasis has been demonstrated clinicopathologically in several types of human cancer, the mechanism by which it functions during the multistep process of metastasis remains largely unknown. We investigated the role of C/EBP-, in the intravascular step of hematogenous metastasis in a rat pancreatic tumor cell line, AR42J-B13, as this step profoundly affects metastatic efficiency. C/EBP-,-transfected AR42J-B13 (,B13) cells acquired considerable resistance against serum toxicity, which was primarily mediated by apoptosis in vitro. Upregulated expression of Bcl-2 and Bcl-xL was seen in ,B13 cells. Enhanced early survival of intraportally injected ,B13 cells in the BALB/c nu/nu male mice liver, detected by the mRNA of a vector-specific gene, was observed. Nick-end labeling analysis of the tumor-injected liver revealed significantly lower rates of apoptosis among intravascular ,B13 tumor cells than among empty vector-transfected AR42J-B13 (mB13) cells. Finally, intrasplenically injected ,B13 cells established a larger number of colonies in the liver than did the mB13 cells. These findings suggest that C/EBP-, may enhance hematogenous metastasis and its antiapoptotic effects may promote the survival of intravascular tumor cells. (Cancer Sci 2007; 98: 1706,1713) [source]


D-TAT transporter as an ocular peptide delivery system

CLINICAL & EXPERIMENTAL OPHTHALMOLOGY, Issue 6 2005
Daniel F Schorderet MD
Abstract Background:, Future treatment for genetic diseases may involve the replacement of malfunctioning genes through virus-mediated gene therapy. However, this approach is plagued with many problems, both ethical and scientific. Therefore, alternative treatments based on new molecules may represent a safer option. Molecular treatment of many eye diseases will need to bring active molecules into the photoreceptors. Recently, the trans -activator protein (TAT) human immunodeficiency virus type 1 (HIV-1) transcriptional factor has proven to be effective in transporting molecules across cellular membranes. The half-life of these molecules does not exceed 48 hours. The potential use of the retro-inverso form of the TAT (D-TAT) peptide, the protein transducing domain of the HIV-1 transcriptional factor, as a molecular transporter was investigated. Methods:, FITC-labelled D-TAT (D-TAT FITC) was applied to the 661W murine photoreceptor cell line in culture. The labelled peptide was also injected into the vitreous body or the subretinal space of adult mice. Cells and cryosections of eyes were analysed under fluorescence microscopy at various time points after peptide treatment. Coimmunostaining with various antibodies was performed in order to characterize the transduces cells. Results:, D-TAT was effective in transducing photoreceptor cells in culture. Transduction of D-TAT FITC was also effective when injected into the vitreous or subretinal space and was observed for a longer period of time than L-TAT FITC. Conclusions:, The retro-inverso form of the TAT sequence is effective in transducing cells from various compartments of the eye. After 14 days, the D-TAT FITC was clearly visible in the retina whereas L-TAT FITC had almost disappeared. The D-TAT peptide represents an interesting molecular transporter that, when coupled to a specific effector, may have potential therapeutic future, especially when a long-lasting action is needed. [source]


The taurine transporter: mechanisms of regulation

ACTA PHYSIOLOGICA, Issue 1-2 2006
X. Han
Abstract Taurine transport undergoes an adaptive response to changes in taurine availability. Unlike most amino acids, taurine is not metabolized or incorporated into protein but remains free in the intracellular water. Most amino acids are reabsorbed at rates of 98,99%, but reabsorption of taurine may range from 40% to 99.5%. Factors that influence taurine accumulation include ionic environment, electrochemical charge, and post-translational and transcriptional factors. Among these are protein kinase C (PKC) activation and transactivation or repression by proto-oncogenes such as WT1, c-Jun, c-Myb and p53. Renal adaptive regulation of the taurine transporter (TauT) was studied in vivo and in vitro. Site-directed mutagenesis and the oocyte expression system were used to study post-translational regulation of the TauT by PKC. Reporter genes and Northern and Western blots were used to study transcriptional regulation of the taurine transporter gene (TauT). We demonstrated that (i) the body pool of taurine is controlled through renal adaptive regulation of TauT in response to taurine availability; (ii) ionic environment, electrochemical charge, pH, and developmental ontogeny influence renal taurine accumulation; (iii) the fourth segment of TauT is involved in the gating of taurine across the cell membrane, which is controlled by PKC phosphorylation of serine 322 at the post-translational level; (iv) expression of TauT is repressed by the p53 tumour suppressor gene and is transactivated by proto-oncogenes such as WT1, c-Jun, and c-Myb; and (v) over-expression of TauT protects renal cells from cisplatin-induced nephrotoxicity. [source]


Promoter analysis of ventricular myosin heavy chain (vmhc) in zebrafish embryos

DEVELOPMENTAL DYNAMICS, Issue 7 2009
Daqing Jin
Abstract In zebrafish, ventricular myosin heavy chain (vmhc) gene is initially expressed at the anterior lateral mesoderm and thereafter its expression is restricted to the cardiac ventricle. The transcriptional control mechanisms in regulating chamber-specific expression of myosin heavy chains are not well defined. We isolated and analyzed zebrafish vmhc upstream region to examine the spatial and temporal regulation of vmhc using transgenic and transient expression techniques. Promoter deletion analyses defined a basal promoter region sufficient to drive vmhc expression in the ventricle and an upstream fragment necessary for repressing ectopic vmhc expression in the atrium. The transcriptional mechanism that prevents vmhc expression in the atrium is mediated through Nkx2.5 binding elements (NKE). We have further discovered that paired-related homeobox transcriptional factor 2 (Prx2/S8)-like binding elements are required for promoting vmhc expression, and Prrx1b, a Prx-related homeobox protein, participates in the regulation of vmhc expression with other transcriptional factors. Developmental Dynamics 238:1760,1767, 2009. © 2009 Wiley-Liss, Inc. [source]


High glucose activates pituitary proopiomelanocortin gene expression: possible role of free radical-sensitive transcription factors

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 4 2007
Koichi Asaba
Abstract Background Hyperglycemia is recognized as a metabolic stress, and indeed it is known to stimulate hypothalamo-pituitary-adrenal (HPA) axis, a representative anti-stress system, in patients with diabetes mellitus or in animal models of hyperglycemia. Thus, we tried to clarify the molecular mechanism of glucose-induced HPA axis activation. Methods We studied the effect of high glucose on the transcriptional regulation of proopiomelanocortin (POMC) gene that encodes adrenocorticotropic hormone, a central mediator of HPA axis, using AtT20 corticotroph cell line in vitro. Results We found that high glucose concentration (24 mM) significantly stimulated the 5,-promoter activity of POMC gene. The effect was promoter-specific, and was mimicked by nuclear factor-kappaB (NF-,B)- or AP1-responsive promoters but not by cAMP-responsive element or serum-response element-containing promoters. Furthermore, the stimulatory effect of high glucose on POMC gene was eliminated by NF-,B and AP1 inhibitors, suggesting the involvement of the transcriptional factors. The POMC 5,-promoter has the canonical NF-,B consensus sequence, and gel shift assay showed the binding of NF-,B to the element. Finally, the effect of high glucose was completely abolished by treatment with a radical quencher 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL). Conclusions Our data suggest that hyperglycemia activates POMC gene expression, at least partly, via NF-,B/AP1, and that high-glucose-induced free radical generation may mediate the activation of these transcription factors, which in turn stimulates the transcription of POMC gene. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Erythrocytes as targets for gamma-glutamyltranspeptidase initiated pro-oxidant reaction

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 5 2002
Hayet Aberkane
Abstract: Gamma-glutamyltranspeptidase (GGT) is a well known cell plasma membrane and serum circulating enzyme. In clinical chemistry, GGT is used as a marker of alcohol consumption and drug uptake. Serum GGT activity varies in hepatobiliary diseases and cancer. This enzyme is involved in glutathione (GSH) metabolism, which is generally associated with antioxidant properties. However, in recent years, findings from our group and from others showed that GGT-catalysed extracellular metabolism of GSH leads, in the presence of iron, to the generation of reactive oxygen species (ROS). It was demonstrated that those highly reactive species oxidise lipids, cell surface protein thiols or activate transcriptional factors such as Nuclear Factor ,B (NF,B). The objective of the present work is to determine whether the red blood cells are targets for plasma GGT-initiated pro-oxidant reaction. The results obtained demonstrate that the GGT/GSH/iron system oxidises isolated erythrocyte membranes. A significant release of haemoglobin and a decrease of erythrocyte deformability are also observed. In addition, in vivo studies showed a relationship between plasma GGT activity and erythrocyte deformability in 20 studied subjects. In conclusion, GGT-mediated ROS production is able to oxidise erythrocytes and thus disturbs their functions. [source]


Bumetanide, the Specific Inhibitor of Na+ -K+ -2Cl, Cotransport, Inhibits 1,,25-Dihydroxyvitamin D3 -Induced Osteoclastogenesis in a Mouse co-culture System

EXPERIMENTAL PHYSIOLOGY, Issue 5 2003
Hyun-A Lee
The Na+ -K+ -2Cl, cotransporter (NKCC1) is responsible for ion transport across the secretory and absorptive epithelia, the regulation of cell volume, and possibly the modulation of cell growth and development. It has been reported that a variety of cells, including osteoblasts, contain this cotransporter. In this study, the physiological role of NKCC1 in osteoclastogenesis was exploited in a co-culture system. Bumetanide, a specific inhibitor of NKCC1, reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. In order to investigate the mechanism by which bumetanide inhibits osteoclastogenesis, the mRNA expressions of the receptor activator of nuclear factor (NF)-,B ligand (RANKL) and osteoprotegerin (OPG) were analysed by RT-PCR. Exposure of osteoblastic cells to a medium containing 1 µM bumetanide reduced RANKL mRNA expression induced by 10 nM 1,,25-dihydroxyvitamin D3 (1,,25(OH)2D3, in a dose-dependent manner. In addition, RANKL expression was also analysed with enzyme-linked immunosorbant assay (ELISA) using anti-RANKL antibody. The expression of RANKL was decreased with the increase of bumetanide concentration. In contrast, the expression of OPG mRNA, a novel tumour necrosis factor (TNF) receptor family member was increased in the presence of bumetanide. These results imply that bumetanide inhibits osteoclast differentiation by reducing the RANKL/OPG ratio in osteoblastic cells. However, no significant difference in M-CSF mRNA expression was observed when bumetanide was added. Also, we found that the phosphorylation of c-Jun NH2 -terminal kinase (JNK), which regulates the activity of various transcriptional factors, was reduced by bumetanide treatment. Conclusively, these findings suggest that NKCC1 in osteoblasts has a pivotal role in 1,,25(OH)2D3 -induced osteoclastogenesis partly via the phosphorylation of JNK. [source]


Evolution and phylogenetic relationships of APSES proteins from Hemiascomycetes

FEMS YEAST RESEARCH, Issue 4 2008
Bernardo Ramírez-Zavala
Abstract Available complete genomic sequences of hemiascomycetous yeast species were analysed in order to identify the APSES protein family, which belongs to transcriptional factors of the basic helix,loop,helix (bHLH) class. Phylogenetic analyses of the amino acid sequences revealed that a similar set of proteins were present in all yeast species studied. The genome duplication event of Saccharomycetales allows the acquisition of complementary functions between the APSES proteins. Putative ancestors, such as Ashbya gossypii, the Kluyveromyces group and filamentous fungi, only have one APSES protein. Conserved gene order relationships allow the possibility of tracing the evolution of this family and the detection of duplication events. Multiple alignments revealed strict conservation of the APSES motif, although other regions of the APSES proteins were diversified. This review focuses on the evolution of the gene family of APSES proteins in related Hemiascomycetes species; the comparisons could shed light on the functional overlap of these proteins with regard to the regulation of morphogenetic processes and their involvement in the virulence of pathogenic microorganisms. [source]


Transcription factor HNF and hepatocyte differentiation

HEPATOLOGY RESEARCH, Issue 10 2008
Masahito Nagaki
To know the precise mechanisms underlying the life or death and the regeneration or differentiation of cells would be relevant and useful for the development of a regenerative therapy for organ failure. Liver-specific gene expression is controlled primarily at a transcriptional level. Studies on the transcriptional regulatory elements of genes expressed in hepatocytes have identified several liver-enriched transcriptional factors, including hepatocyte nuclear factor (HNF)-1, HNF-3, HNF-4, HNF-6 and CCAAT/enhancer binding protein families, which are key components of the differentiation process for the fully functional liver. The transcriptional regulation by these HNFs, which form a hierarchical and cooperative network, is both essential for hepatocyte differentiation during mammalian liver development and also crucial for metabolic regulation and liver function. Among these liver-enriched transcription factors, HNF-4 is likely to act the furthest upstream as a master gene in transcriptional cascade and interacts with other liver-enriched transcriptional factors to stimulate hepatocyte-specific gene transcription. A link between the extracellular matrix, changes in cytoskeletal filament assembly and hepatocyte differentiation via HNF-4 has been shown to be involved in the transcriptional regulation of liver-specific gene expression. This review provides an overview of the roles of liver-enriched transcription factors in liver function. [source]


Regulation of glucose transporter type 4 isoform gene expression in muscle and adipocytes

IUBMB LIFE, Issue 3 2007
Seung-Soon Im
Abstract The gene expression of glucose transporter type 4 isoform (GLUT4) is known to be controlled by metabolic, nutritional, or hormonal status. Understanding the molecular mechanisms governing GLUT4 gene expression is critical, because glucose disposal in the body depends on the activities of GLUT4 in the muscle and adipocytes. The GLUT4 activities are regulated by a variety of mechanisms. One of them is transcriptional regulation. GLUT4 gene expression is regulated by a variety of transcriptional factors in muscle and adipose tissue. These data are accumulating regarding the transcriptional factors regulating GLUT4 gene expression. These include MyoD, MEF2A, GEF, TNF-,, TR-1,, KLF15, SREBP-1c, C/EBP-,, O/E-1, free fatty acids, PAPR,, LXR,, NF-1, etc. These factors are involved in the positive or negative regulation of GLUT4 gene expression. In addition, there is a complex interplay between these factors in transactivating GLUT4 promoter activity. Understanding the mechanisms controlling GLUT4 gene transcription in these tissues will greatly promote the potential therapeutic drug development for obesity and T2DM. IUBMB Life, 59: 134-145, 2007 [source]


Biomolecular characterization of human glioblastoma cells in primary cultures: Differentiating and antiangiogenic effects of natural and synthetic PPAR, agonists

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2008
E. Benedetti
Gliomas are the most commonly diagnosed malignant brain primary tumors. Prognosis of patients with high-grade gliomas is poor and scarcely affected by radiotherapy and chemotherapy. Several studies have reported antiproliferative and/or differentiating activities of some lipophylic molecules on glioblastoma cells. Some of these activities in cell signaling are mediated by a class of transcriptional factors referred to as peroxisome proliferator-activated receptors (PPARs). PPAR, has been identified in transformed neural cells of human origin and it has been demonstrated that PPAR, agonists decrease cell proliferation, stimulate apoptosis and induce morphological changes and expression of markers typical of a more differentiated phenotype in glioblastoma and astrocytoma cell lines. These findings arise from studies mainly performed on long-term cultured transformed cell lines. Such experimental models do not exactly reproduce the in vivo environment since long-term culture often results in the accumulation of further molecular alterations in the cells. To be as close as possible to the in vivo condition, in the present work we investigated the effects of PPAR, natural and synthetic ligands on the biomolecular features of primary cultures of human glioblastoma cells derived from surgical specimens. We provide evidence that PPAR, agonists may interfere with glioblastoma growth and malignancy and might be taken in account as novel antitumoral drugs. J. Cell. Physiol. 217: 93,102, 2008. © 2008 Wiley-Liss, Inc. [source]


Hepatomegaly in transgenic mice expressing the homeobox gene Cux-1

MOLECULAR CARCINOGENESIS, Issue 1 2005
Gregory B. Vanden Heuvel
Abstract Cux-1 is a member of a family of homeobox genes structurally related to Drosophila Cut. Mammalian Cut proteins function as transcriptional repressors of genes specifying terminal differentiation in multiple cell lineages. In addition, mammalian Cut proteins serve as cell-cycle-dependent transcriptional factors in proliferating cells, where they function to repress expression of the cyclin kinase inhibitors p21 and p27. Previously we showed that transgenic mice expressing Cux-1 under control of the CMV immediate early gene promoter develop multiorgan hyperplasia. Here we show that mice constitutively expressing Cux-1 exhibit hepatomegaly correlating with an increase in cell proliferation. In addition, the increase in Cux-1 expression in transgenic livers was associated with a decrease in p21, but not p27, expression. Within transgenic livers, Cux-1 was ectopically expressed in a population of small cells, but not in mature hepatocytes, and many of these small cells expressed markers of proliferation. Transgenic livers showed an increase in ,-smooth muscle actin, indicating activation of hepatic stellate cells, and an increase in cells expressing chromogranin-A, a marker for hepatocyte precursor cells. Morphological analysis of transgenic livers revealed inflammation, hepatocyte swelling, mixed cell foci, and biliary cell hyperplasia. These results suggest that increased expression of Cux-1 may play a role in the activation of hepatic stem cells, possibly through the repression of the cyclin kinase inhibitor p21. © 2005 Wiley-Liss, Inc. [source]


Signaling pathways in osteoblast proinflammatory responses to infection by Porphyromonas gingivalis

MOLECULAR ORAL MICROBIOLOGY, Issue 2 2008
T. Ohno
Introduction:, We recently investigated global gene expression in ST2 mouse stromal cells infected by the periodontal pathogen Porphyromonas gingivalis using microarray technology, and found that the bacterium induces a wide range of proinflammatory gene expression. Here, we reported the signaling pathways involved in those proinflammatory responses. Methods:, ST2 cells and primary calvarial osteoblasts from C3H/HeN, C57BL/6, and MyD88-deficient (MyD88,/,) mice were infected with P. gingivalis ATCC33277 and its gingipain-deficient mutant KDP136. Expression of the chemokines CCL5 and CXCL10, and matrix metalloproteinase-9 (MMP9) were quantified by real-time polymerase chain reaction, while phosphorylation of protein kinases and degradation of an inhibitor of nuclear factor-,B, I,B-,, were detected by Western blotting, and activation of transcriptional factors was determined by a luciferase reporter assay. The effects of inhibitors of transcriptional factors and protein kinases were also investigated. Results:, Infection by P. gingivalis elicited gene expression of CCL5, CXCL10, and MMP9 in both ST2 cells and osteoblasts. Western blot and reporter assay results revealed activation of nuclear factor-,B (NF-,B) and activator protein-1 transcription factors. The NF-,B inhibitor suppressed the expression of CCL5 and MMP9, but not that of CXCL10, whereas P. gingivalis infection induced significant CCL5 expression in MyD88,/, osteoblasts. In addition, activation of protease-activated receptors by trypsin elicited significant induction of CXCL10. Conclusion:, Our results suggest that various proinflammatory responses in P. gingivalis -infected stromal/osteoblast cells are NF-,B-dependent, but not always dependent on the Toll-like receptor/MyD88 pathway, while some responses are related to the activation of protease-activated receptors. Thus, P. gingivalis does not fully utilize well-established pathogen recognition molecules such as Toll-like receptors. [source]


Up-Regulation of OsBIHD1, a Rice Gene Encoding BELL Homeodomain Transcriptional Factor, in Disease Resistance Responses

PLANT BIOLOGY, Issue 5 2005
H. Luo
Abstract: In the present study, we cloned and identified a full-length cDNA of a rice gene, OsBIHD1, encoding a homeodomain type transcriptional factor. OsBIHD1 is predicted to encode a 642 amino acid protein and the deduced protein sequence of OsBIHD1 contains all conserved domains, a homeodomain, a BELL domain, a SKY box, and a VSLTLGL box, which are characteristics of the BELL type homedomain proteins. The recombinant OsBIHD1 protein expressed in Escherichia coli bound to the TGTCA motif that is the characteristic cis -element DNA sequence of the homeodomain transcriptional factors. Subcellular localization analysis revealed that the OsBIHD1 protein localized in the nucleus of the plant cells. The OsBIHD1 gene was mapped to chromosome 3 of the rice genome and is a single-copy gene with four exons and three introns. Northern blot analysis showed that expression of OsBIHD1 was activated upon treatment with benzothiadiazole (BTH), which is capable of inducing disease resistance. Expression of OsBIHD1 was also up-regulated rapidly during the first 6 h after inoculation with Magnaporthe grisea in BTH-treated rice seedlings and during the incompatible interaction between M. grisea and a resistant genotype. These results suggest that OsBIHD1 is a BELL type of homeodomain transcription factor present in the nucleus, whose induction is associated with resistance response in rice. [source]


Development, repair and fibrosis: What is common and why it matters

RESPIROLOGY, Issue 5 2009
Wei SHI
ABSTRACT The complex structure of the lung is developed sequentially, initially by epithelial tube branching and later by septation of terminal air sacs with accompanying coordinated growth of a variety of lung epithelial and mesenchymal cells. Groups of transcriptional factors, peptide growth factors and their intracellular signaling regulators, as well as extracellular matrix proteins are programmed to be expressed at appropriate levels in the right place at the right time to control normal lung formation. Studies of lung development and lung repair/fibrosis to date have discovered that many of the same factors that control normal development are also key players in lung injury repair and fibrosis. Transforming growth factor-, (TGF-,) family peptide signaling is a prime example. Lack of TGF-, signaling results in abnormal lung branching morphogenesis and alveolarization during development, whereas excessive amounts of TGF-, signaling cause severe hypoplasia in the immature lung and fibrosis in mature lung. This leads us to propose the ,Goldilocks' hypothesis of regulatory signaling in lung development and injury repair that everything must be done just right! [source]


Role of Increased Penile Expression of Transforming Growth Factor-,1 and Activation of the Smad Signaling Pathway in Erectile Dysfunction in Streptozotocin-Induced Diabetic Rats

THE JOURNAL OF SEXUAL MEDICINE, Issue 10 2008
Lu Wei Zhang MD
ABSTRACT Introduction., It has been suggested that transforming growth factor-,1 (TGF-,1) plays an important role in the pathogenesis of diabetes-induced erectile dysfunction. Aim., To investigate the expression and activity of Smad transcriptional factors, the key molecules for the initiation of TGF-,-mediated fibrosis, in the penis of streptozotocin (STZ)-induced diabetic rats. Methods., Fifty-two 8-week-old Sprague,Dawley rats were used and divided into control and diabetic groups. Diabetes was induced by an intravenous injection of STZ. Main Outcome Measures., Eight weeks later, erectile function was measured by electrical stimulation of the cavernous nerve (N = 12 per group). The penis was harvested and stained with Masson trichrome or antibody to TGF-,1, phospho-Smad2 (P-Smad2), smooth muscle ,-actin, and factor VIII (N = 12 per group). Penis specimens from a separate group of animals were used for TGF-,1 enzyme-linked immunosorbent assay (ELISA), P-Smad2/Smad2, phospho-Smad3 (P-Smad3)/Smad3, fibronectin, collagen I, and collagen IV western blot, or hydroxyproline determination. Results., Erectile function was significantly reduced in diabetic rats compared with that in controls. The expression of TGF-,1, P-Smad2, and P-Smad3 protein evaluated by ELISA or western blot was higher in diabetic rats than in controls. Compared with that in control rats, P-Smad2 expression was higher mainly in smooth muscle cells and fibroblasts of diabetic rats, whereas no significant differences were noted in endothelial cells or in the dorsal nerve bundle. Cavernous smooth muscle and endothelial cell contents were lower in diabetic rats than in controls. Cavernous fibronectin, collagen IV, and hydroxyproline content was significantly higher in diabetic rats than in controls. Conclusion., Upregulation of TGF-,1 and activation of the Smad signaling pathway in the penis of diabetic rats might play important roles in diabetes-induced structural changes and deterioration of erectile function. Zhang LW, Piao S, Choi MJ, Shin H-Y, Jin H-R, Kim WJ, Song SU, Han J-Y, Park SH, Mamura M, Kim S-J, Ryu J-K, and Suh J-K. Role of increased penile expression of transforming growth factor-,1 and activation of the Smad signaling pathway in erectile dysfunction in streptozotocin-induced diabetic rats. J Sex Med 2008;5:2318,2329. [source]