Trans Retinal (trans + retinal)

Distribution by Scientific Domains


Selected Abstracts


Overview of retinoid metabolism and function

DEVELOPMENTAL NEUROBIOLOGY, Issue 7 2006
Rune Blomhoff
Abstract Retinoids (vitamin A) are crucial for most forms of life. In chordates, they have important roles in the developing nervous system and notochord and many other embryonic structures, as well as in maintenance of epithelial surfaces, immune competence, and reproduction. The ability of all- trans retinoic acid to regulate expression of several hundred genes through binding to nuclear transcription factors is believed to mediate most of these functions. The role of all- trans retinoic may extend beyond the regulation of gene transcription because a large number of noncoding RNAs also are regulated by retinoic acid. Additionally, extra-nuclear mechanisms of action of retinoids are also being identified. In organisms ranging from prokaryotes to humans, retinal is covalently linked to G protein-coupled transmembrane receptors called opsins. These receptors function as light-driven ion pumps, mediators of phototaxis, or photosensory pigments. In vertebrates phototransduction is initiated by a photochemical reaction where opsin-bound 11- cis -retinal is isomerized to all- trans -retinal. The photosensitive receptor is restored via the retinoid visual cycle. Multiple genes encoding components of this cycle have been identified and linked to many human retinal diseases. Central aspects of vitamin A absorption, enzymatic oxidation of all- trans retinol to all- trans retinal and all- trans retinoic acid, and esterification of all- trans retinol have been clarified. Furthermore, specific binding proteins are involved in several of these enzymatic processes as well as in delivery of all- trans retinoic acid to nuclear receptors. Thus, substantial progress has been made in our understanding of retinoid metabolism and function. This insight has improved our view of retinoids as critical molecules in vision, normal embryonic development, and in control of cellular growth, differentiation, and death throughout life. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 606,630, 2006 [source]


Activity Switches of Rhodopsin,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2008
Eglof Ritter
Rhodopsin, the visual pigment of the rod photoreceptor cell contains as its light-sensitive cofactor 11- cis retinal, which is bound by a protonated Schiff base between its aldehyde group and the Lys296 side chain of the apoprotein. Light activation is achieved by 11- cis to all- trans isomerization and subsequent thermal relaxation into the active, G protein-binding metarhodopsin II state. Metarhodopsin II decays via two parallel pathways, which both involve hydrolysis of the Schiff base eventually to opsin and released all- trans retinal. Subsequently, rhodopsin's dark state is regenerated by a complicated retinal metabolism, termed the retinoid cycle. Unlike other retinal proteins, such as bacteriorhodopsin, this regeneration cycle cannot be short cut by light, because blue illumination of active metarhodopsin II does not lead back to the ground state but to the formation of largely inactive metarhodopsin III. In this review, mechanistic details of activating and deactivating pathways of rhodopsin, particularly concerning the roles of the retinal, are compared. Based on static and time-resolved UV/Vis and FTIR spectroscopic data, we discuss a model of the light-induced deactivation. We describe properties and photoreactions of metarhodopsin III and suggest potential roles of this intermediate for vision. [source]


Chromophore Interaction in Xanthorhodopsin,Retinal Dependence of Salinixanthin Binding,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2008
Eleonora S. Imasheva
Xanthorhodopsin is a light-driven proton pump in the extremely halophilic bacterium Salinibacter ruber. Its unique feature is that besides retinal it has a carotenoid, salinixanthin, with a light harvesting function. Tight and specific binding of the carotenoid antenna is controlled by binding of the retinal. Addition of all- trans retinal to xanthorhodopsin bleached with hydroxylamine restores not only the retinal chromophore absorption band, but causes sharpening of the salinixanthin bands reflecting its rigid binding by the protein. In this report we examine the correlation of the changes in the two chromophores during bleaching and reconstitution with native all- trans retinal, artificial retinal analogs and retinol. Bleaching and reconstitution both appear to be multistage processes. The carotenoid absorption changes during bleaching occurred not only upon hydrolysis of the Schiff base but continued while the retinal was leaving its binding site. In the case of reconstitution, the 13-desmethyl analog formed the protonated Schiff base slower than retinal, and provided the opportunity to observe changes in carotenoid binding at various stages. The characteristic sharpening of the carotenoid bands, indicative of its reduced conformational heterogeneity in the binding site, occurs when the retinal occupies the binding site but the covalent bond to Lys-240 via a Schiff base is not yet formed. This is confirmed by the results for retinol reconstitution, where the Schiff base does not form but the carotenoid exhibits its characteristic spectral change from the binding. [source]


Functional Expression, Targeting and Ca2+ Signaling of a Mouse Melanopsin-eYFP Fusion Protein in a Retinal Pigment Epithelium Cell Line,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2008
Maikel E. Giesbers
Melanopsin, first discovered in Xenopus melanophores, is now established as a functional sensory photopigment of the intrinsically photosensitive retinal ganglion cells. These ganglion cells drive circadian rhythm and pupillary adjustments through projection to the brain. Melanopsin shares structural similarities with all known opsins. Comprehensive characterization of melanopsin with respect to its spectral properties, photochemical cascade and signaling partners requires a suitable recombinant system and high expression levels. This combination has not yet been described. To address this issue, we have expressed recombinant mouse melanopsin in several cell lines. Using enhanced yellow fluorescent protein (eYFP) as a visualization tag, expression was observed in all cell lines. Confocal microscopy revealed that melanopsin was properly routed to the plasma membrane only in retinal pigment epithelium (RPE)-derived D407 cells and in human embryonic kidney (HEK) cells. Further, we performed intracellular calcium measurements in order to probe the melanopsin signaling activity of this fusion protein. Transfected cells were loaded with the calcium indicator Fura2-AM. Upon illumination, an immediate but transient calcium response was observed in HEK as well as in D407 cells, while mock-transfected cells showed no calcium response under identical conditions. Supplementation with 11- cis retinal or all- trans retinal enhanced the response. After prolonged illumination the cells became desensitized. Thus, RPE-derived cells expressing recombinant melanopsin may constitute a suitable system for the study of the structural and functional characteristics of melanopsin. [source]


Effect of Visible Light on Normal and P23H-3 Transgenic Rat Retinas: Characterization of a Novel Retinoic Acid Derivative Present in the P23H-3 Retina

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2006
Todd Duncan
ABSTRACT Transgenic rats with the P23H mutation in rhodopsin exhibit increased susceptibility to light damage, compared with normal animals. It is known that light-induced retinal damage requires repetitive bleaching of rhodopsin and that photoreceptor cell loss is by apoptosis; however, the underlying molecular mechanism(s) leading to photoreceptor cell death are still unknown. Photoproducts, such as all- trans retinal or other retinoid metabolites, released by the extensive bleaching of rhodopsin could lead to activation of degenerative processes, especially in animals genetically predisposed to retinal degenerations. Using wild-type and transgenic rats carrying the P23H opsin mutation, we evaluated the effects of acute intense visible light on retinoid content, type and distribution in ocular tissues. Rats were exposed to green light (480,590 nm) for 0, 5, 10, 30 and 120 min. Following light treatment, rats were sacrificed and neural retinas were dissected free of the retinal pigment epithelium. Retinoids were extracted from retinal tissues and then subjected to HPLC and mass spectral analysis. We found that the light exposure affected relative levels of retinoids in the neural retina and retinal pigment epithelium of wild-type and P23H rat eyes similarly. In the P23H rat retina but not the wild-type rat retina, we found a retinoic acid-like compound with an absorbance maximum of 357 nm and a mass of 304 daltons. Production of this retinoic acid-like compound in transgenic rats is influenced by the age of the animals and the duration of light exposure. It is possible that this unique retinoid may be involved in the process of light-induced retinal degeneration. [source]


Determining Molecular Structures and Conformations Directly from Electron Diffraction using a Genetic Algorithm

CHEMPHYSCHEM, Issue 2 2006
Scott Habershon Dr.
Abstract A global optimization strategy, based upon application of a genetic algorithm (GA), is demonstrated as an approach for determining the structures of molecules possessing significant conformational flexibility directly from gas-phase electron diffraction data. In contrast to the common approach to molecular structure determination, based on trial-and-error assessment of structures available from quantum chemical calculations, the GA approach described here does not require expensive quantum mechanical calculations or manual searching of the potential energy surface of the sample molecule, relying instead upon simple comparison between the experimental and calculated diffraction pattern derived from a proposed trial molecular structure. Structures as complex as all- trans retinal and p -coumaric acid, both important chromophores in photosensing processes, may be determined by this approach. In the examples presented here, we find that the GA approach can determine the correct conformation of a flexible molecule described by 11 independent torsion angles. We also demonstrate applications to samples comprising a mixture of two distinct molecular conformations. With these results we conclude that applications of this approach are very promising in elucidating the structures of large molecules directly from electron diffraction data. [source]