Home About us Contact | |||
Bet V (bet + v)
Kinds of Bet V Selected AbstractsThe allergen Bet v 1 in fractions of ambient air deviates from birch pollen countsALLERGY, Issue 7 2010J. T. M. Buters To cite this article: Buters JTM, Weichenmeier I, Ochs S, Pusch G, Kreyling W, Boere AJF, Schober W, Behrendt H. The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy 2010; 65: 850,858. Abstract Background:, Proof is lacking that pollen count is representative for allergen exposure, also because allergens were found in nonpollen-bearing fractions of ambient air. Objective:, We monitored simultaneously birch pollen and the major birch pollen allergen Bet v 1 in different size fractions of ambient air from 2004 till 2007 in Munich, Germany. Methods:, Air was sampled with a ChemVol® high-volume cascade impactor equipped with stages for particulate matter (PM)>10 ,m, 10 ,m>PM>2.5 ,m, and 2.5 ,m>PM>0.12 ,m. Allergen was determined with a Bet v 1-specific ELISA. Pollen count was assessed with a Burkard pollen trap. We also measured the development of allergen in pollen during ripening. Results:, About 93 ± 3% of Bet v 1 was found in the PM,>,10 ,m fraction, the fraction containing birch pollen. We did not measure any Bet v 1 in 2.5 ,m,>,PM,>,0.12 ,m. Either in Munich no allergen was in this fraction or the allergen was absorbed to diesel soot particles that also deposit in this fraction. Pollen released 115% more Bet v 1 in 2007 than in 2004. Also within 1 year, the release of allergen from the same amount of pollen varied more than 10-fold between different days. This difference was explained by a rapidly increasing expression of Bet v 1 in pollen in the week just before pollination. Depending on the day the pollen is released during ripening, its potency varies. Conclusion:, In general, pollen count and allergen in ambient air follow the same temporal trends. However, because a 10-fold difference can exist in allergen potency of birch pollen, symptoms might be difficult to correlate with pollen counts, but perhaps better with allergen exposure. [source] Birch pollen allergen Bet v 1 binds to and is transported through conjunctival epithelium in allergic patientsALLERGY, Issue 6 2009J. Renkonen Background:, Previous work in type-I pollen allergies has mainly focused on lymphocytes and immune responses. Here, we begin to analyse with a systems biology view the differences in conjunctival epithelium obtained from healthy and allergic subjects. Methods:, Transcriptomics analysis combined with light and electron microscopic analysis of birch pollen allergen Bet v 1 located within conjunctival epithelial cells and tissues from birch allergic subjects and healthy controls was carried out. Results:, Bet v 1 pollen allergen bound to conjunctival epithelial cells within minutes after the exposure even during the nonsymptomatic winter season only in allergic, but not in healthy individuals. Light- and electron microscopy showed that Bet v 1 was transported through the epithelium within lipid rafts/caveolae and reached mast cells only in allergic patients, but not in healthy individuals. Transcriptomics yielded 22 putative receptors expressed at higher levels in allergic epithelium compared with healthy specimens. A literature search indicated that out of these receptors, eight (i.e. 37%) were associated with lipid rafts/caveolae, which suggested again that Bet v 1 transport is lipid raft/caveola-dependent. Conclusions:, We show a clear difference in the binding and uptake of Bet v 1 allergen by conjunctival epithelial cells in allergic vs healthy subjects and several putative lipid raft/caveolar receptors were identified, which could mediate or be co-transported with this entry. The application of discovery driven methodologies on human conjunctival epithelial cells and tissues can provide new hypotheses worth a further analysis to the molecular mechanisms of a complex multifactorial disease such as type-I birch pollen allergy. [source] Identification of B-cell epitopes of Bet v 1 involved in cross-reactivity with food allergensALLERGY, Issue 4 2009E. Klinglmayr Background:, The pollen-food syndrome (PFS) is an association of food allergies to fruits, nuts, and vegetables in patients with pollen allergy. Mal d 1, the major apple allergen, is one of the most commonly associated food allergens for birch pollen-allergic patients suffering from PFS. Although the reactions are due to cross-reactive IgE antibodies originally raised against pollen Bet v 1, not every Bet v 1-allergic patient develops clinical reactions towards apple. Aim of the study:, We speculate that distinct IgE epitopes are responsible for the clinical manifestation of PFS. To test this hypothesis we grafted five Mal d 1 stretches onto Bet v 1. The grafted regions were 7- or 8-amino acids long encompassing amino acids residues previously shown to be crucial for IgE recognition of Bet v 1. Methods:, A Bet v 1-Mal d 1 chimeric protein designated BMC was expressed in Escherichia coli and purified to homogeneity. IgE reactivity of BMC was tested with patients' sera originating from (i) Bet v 1-allergic patients displaying no clinical symptoms upon ingestion of apples; and (ii) Bet v 1-allergic patients displaying allergic symptoms upon ingestion of apples and other Bet v 1-related foods. Results and conclusion:, Compared to birch pollen-allergic individuals, patients suffering from PFS showed significantly higher IgE reactivity with BMC (chimeric protein). The results suggest that the Mal d 1 regions grafted onto the Bet v 1 sequence comprise important IgE epitopes recognized by Bet v 1-allergic patients suffering from allergy to apples. [source] Immunologic characterization of isoforms of Car b 1 and Que a 1, the major hornbeam and oak pollen allergensALLERGY, Issue 3 2009M. Wallner Background:, Birch pollen allergy is one of the most common causes of spring pollinosis often associated with hypersensitivity reactions to pollen of other Fagales species. Yet, only the major disease eliciting allergens of alder and hazel have been fully characterized. Therefore, the aim of this study was to perform cloning, expression and immunologic characterization of the Bet v 1 homologues from oak (Que a 1) and hornbeam (Car b 1). Methods:, The isoform pattern of Car b 1 and Que a 1 was analyzed by proteomics using 2D gel electrophoresis and LC ESI-QTOF MS. Isoallergens showing high IgE-binding were cloned and expressed in Escherichia coli. IgE-binding activity of the recombinant proteins was determined by enzyme-linked immunosorbent assay (ELISA) and basophil mediator release assays using serum samples from patients mainly exposed either to oak and hornbeam or to birch pollen. Cross-reactivity of the allergens was further investigated at the T-cell level. Results:, Dominant isoforms of Car b 1 and Que a 1, identified by mass spectrometry, showed different IgE-binding properties when testing Fagales pollen-allergic patients living in birch-free areas as compared to birch-sensitized individuals. Conclusion:, Tree pollen-allergic patients who are primarily exposed to Fagales pollen other than birch reacted stronger with rCar b 1 and rQue a 1 than with rBet v 1, as determined by inhibition ELISA and basophil mediator release assays. Thus, rCar b 1 and rQue a 1 allergens should be considered for improving molecule-based diagnosis and therapy of tree pollen allergies manifesting in birch-free areas. [source] The impact of pollen-related food allergens on pollen allergyALLERGY, Issue 1 2007B. Bohle Patients with birch pollen allergy frequently develop hypersensitivity reactions to certain foods, e.g. apples, celery, carrots and hazelnuts. These reactions are mainly caused by IgE-antibodies specific for the major birch pollen allergen, Bet v 1, which cross-react with homologous proteins in these foods. Analyzing the T-cell response to Bet v 1-related food allergens revealed that these dietary proteins contain several distinct T-cell epitopes and activate Bet v 1-specific T cells to proliferate and produce cytokines. Several of these cross-reactive T-cell epitopes were not destroyed by simulated gastrointestinal digestion of food allergens and stimulated Bet v 1-specific T cells despite nonreactivity with IgE antibodies. Similarly, cooked food allergens did not elicit IgE-mediated symptoms (oral allergy syndromes) but caused T-cell-mediated late-phase reactions (deterioration of atopic eczema) in birch pollen-allergic patients with atopic dermatitis because thermal processing affected their conformational structure and not the primary amino acid sequence. Thus, T-cell cross-reactivity between Bet v 1 and related food allergens occurs independently of IgE-cross-reactivity in vitro and in vivo. We speculate that symptom-free consumption of pollen-related food allergens may have implications for the pollen-specific immune response of allergic individuals. [source] Purification and structural stability of the peach allergens Pru p 1 and Pru p 3MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue S2 2008Sonja Gaier Abstract Pru p 1 (a Bet v 1 homologue) and Pru p 3 (a nonspecific lipid transfer protein; nsLTP) are major allergenic proteins in peach fruit, but differ in their abundance and stability. Pru p 1 has low abundance and is highly labile and was purified after expression as a recombinant protein in Escherichia coli. Pru p 3 is highly abundant in peach peel and was purified by conventional methods. The identities of the proteins were confirmed by sequence analysis and their masses determined by MS analysis. The purified proteins reacted with antisera against related allergens from other species: Pru p 1 with antiserum to Bet v 1 and Pru p 3 with antiserum to Mal d 3 (from apple). The presence of secondary and tertiary structure was demonstrated by circular dichroism (CD) and high field NMR spectroscopy. CD spectroscopy also showed that the two proteins differed in their stability at pH 3 and in their ability to refold after heating to 95°C. Thus, Pru p 1 was unfolded at pH 3 even at 25°C but was able to refold after heating to 95°C at pH 7.5. In contrast, Pru p 3 was unable to refold after heating under neutral conditions but readily refolded after heating at pH 3. [source] Characterization of Bet v 1-related allergens from kiwifruit relevant for patients with combined kiwifruit and birch pollen allergyMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue S2 2008Christina Oberhuber Abstract Allergy to kiwifruit appears to have become more common in Europe and elsewhere during the past several years. Seven allergens have been identified from kiwifruit so far, with actinidin, kiwellin and the thaumatin-like protein as the most relevant ones. In contrast to other fruits, no Bet v 1 homologues were characterized from kiwifruit so far. We cloned, purified, and characterized recombinant Bet v 1-homologous allergens from green (Actinidia deliciosa, Act d 8) and gold (Actinidia chinensis, Act c 8) kiwifruit, and confirmed the presence of its natural counterpart by inhibition assays. Well-characterized recombinant Act d 8 and Act c 8 were recognized by birch pollen/kiwifruit (confirmed by double-blind placebo-controlled food challenge) allergic patients in IgE immunoblots and ELISA experiments. The present data point out that Bet v 1 homologues are allergens in kiwifruit and of relevance for patients sensitized to tree pollen and kiwifruit, and might have been neglected so far due to low abundance in the conventional extracts used for diagnosis. [source] Purification and characterization of natural Bet v 1 from birch pollen and related allergens from carrot and celeryMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 12 2007Mirko A. Bollen Abstract Birch pollen allergy is predominantly caused by the major allergen Bet v 1 and can lead to crossreactions with homologous proteins in food. Two major cross-reactive food allergens are Dau c 1 from carrot and Api g 1 from celery, which have never been purified from their natural source. Here, we describe a non-denaturing purification method for obtaining natural Bet v 1, Dau c 1 and Api g 1, comprising of ammonium sulfate precipitation, hydrophobic interaction chromatography and size exclusion chromatography. This method resulted in 98,99% pure isoform mixtures for each allergen. Characterization of these isoform mixtures with Q-TOF MS/MS clearly showed earlier reported isoforms of Bet v 1, Dau c 1 and Api g 1, but also new isoforms. The presence of secondary structure in the three purified allergens was demonstrated via circular dichroism and showed high similarity. The immune reactivity of the natural allergens was compared with recombinant proteins by Western blot and ELISA and showed similar reactivity. [source] Comparison of conventional FASTA identity searches with the 80 amino acid sliding window FASTA search for the elucidation of potential identities to known allergensMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 8 2007Gregory S. Ladics Abstract Food and Agriculture Organization/World Health Organization (FAO/WHO) recommended that IgE cross-reactivity between a transgenic protein and allergen be considered when there is ,F 35% identity over a sliding "window" of 80 amino acids. Our objective was to evaluate the false positive and negative rates observed using the FAO/WHO versus conventional FASTA analyses. Data used as queries against allergen databases and analyzed to assess false positive rates included: 1102 hypothetical corn ORFs; 907 randomly selected proteins; 89 randomly selected corn proteins; and 97 corn seed proteins. To evaluate false negative rates of both methods: Bet v 1a along with several crossreacting fruit/vegetable allergens and a bean ,-amylase inhibitor were used as queries. Both methods were also evaluated for their ability to detect a putative nonallergenic test protein containing a sequence derived from Ara h 1. FASTA versions 3.3t0 and 3.4t25 were utilized. Data indicate a conventional FASTA analysis produced fewer false positives and equivalent false negative rates. Conventional FASTA versus sliding window derived E scores were generally more significant. Results suggest a conventional FASTA search provides more relevant identity to the query protein and better reflects the functional similarities between proteins. It is recommended that the conventional FASTA analysis be conducted to compare identities of proteins to allergens. [source] Stress-related RNase PR-10c is post-translationally modified by glutathione in birchPLANT CELL & ENVIRONMENT, Issue 6 2002K. M. Koistinen Abstract The PR-10c (previously termed as Bet v 1-Sc3) protein of birch belongs to the family of intracellular pathogenesis-related proteins. The high-performance liquid chromatography electrospray ionization ion trap mass spectrometry (HPLC-ESI-MS) analysis of PR-10c-His fusion protein, produced in Escherichia coli, revealed three major peaks and masses. Enzymatic digestions and HPLC-ESI-MS and matrix assisted laser desorption/ionization , time of flight mass spectrometry (MALDI-TOF-MS) analyses of each fraction indicated that PR-10c-His protein is post-translationally modified by carbamylation and S-glutathiolation. Carbamylation was localized into the N-terminal end of PR-10c-His and does not represent a biologically significant modification. The possible nuclease activity of PR-10c was analysed with S-glutathiolated and reduced fractions of PR-10c-His fusion protein. Both forms of PR-10c-His as well as the dimeric form of the protein possess RNase activity which is capable of digesting different RNA substrates. None of the fractions showed activity against single- or double-stranded DNA. The MALDI-TOF-MS analysis of PR-10c polypeptide extracted from zinc-exposed birch roots showed that the protein is post-translationally modified by glutathione (, -Glu-Cys-Gly) also in vivo. The S-glutathiolated cysteine residue of PR-10c is not conserved among Bet v 1 homologous proteins and is also unique in the PR-10 family. As far as we know this is the first observation of S-glutathiolation in plants, or any post-translational modification in the PR-10 family of proteins. [source] Characterization of the T cell response to the major hazelnut allergen, Cor a 1.04: evidence for a relevant T cell epitope not cross-reactive with homologous pollen allergensCLINICAL & EXPERIMENTAL ALLERGY, Issue 10 2005B. Bohle Summary Background IgE antibodies specific for the major birch-pollen allergen, Bet v 1, cross-react with homologous allergens in particular foods, e.g. apples, carrots and hazelnuts. In a high number of tree pollen-allergic individuals, this cross-reactivity causes clinical symptoms, commonly known as the ,birch-fruit-syndrome'. Objective To characterize the T cell response to the Bet v 1-related major allergen in hazelnuts, Cor a 1.04, and its cellular cross-reactivity with Bet v 1 and the homologous hazel pollen allergen, Cor a 1. Methods Using recombinant Cor a 1.04, T cell lines (TCL) and T cell clones (TCC) were established from peripheral blood mononuclear cells of tree pollen-allergic patients with associated food allergy. T cell epitopes were determined using overlapping synthetic peptides in Cor a 1.04-reactive TCL and TCC. In parallel, reactivity to Bet v 1 and Cor a 1 was tested. Results In total, 20 distinct T cell epitopes on the hazelnut allergen were identified. Several Cor a 1.04-specific TCL and TCC reacted with pollen allergens albeit less pronounced than with the hazelnut allergen. Several Cor a 1.04-specific TCC did not react with pollen allergens. Interestingly, these clones were found to react with the Bet v 1-related major allergen in carrots, Dau c 1. The cellular cross-reactivity between both food allergens could be associated with the most frequently recognized T cell epitope of Cor a 1.04, Cor a 1.04142,153. Conclusions The major hazelnut allergen cross-reacts with the major allergens of birch and hazel pollen but apparently contains a relevant T cell epitope not shared with pollen allergens. Our finding may have important implications for the specific immunotherapy of tree pollen-allergic patients suffering from concomitant hazelnut allergy. [source] Poor association between allergen-specific serum immunoglobulin E levels, skin sensitivity and basophil degranulation: a study with recombinant birch pollen allergen Bet v 1 and an immunoglobulin E detection system measuring immunoglobulin E capable of binding to Fc,RICLINICAL & EXPERIMENTAL ALLERGY, Issue 2 2005A. Purohit Summary Background Results from several studies indicate that the magnitude of immediate symptoms of type I allergy caused by allergen-induced cross-linking of high-affinity Fc, receptors on effector cells (mast cells and basophils) is not always associated with allergen-specific IgE levels. Objective To investigate the association of results from intradermal skin testing, basophil histamine release and allergen-specific IgE, IgG1,4, IgA and IgM antibody levels in a clinical study performed in birch pollen-allergic patients (n=18). Methods rBet v 1-specific IgEs were measured by quantitative CAP measurements and by using purified Fc,RI-derived ,-chain to quantify IgE capable of binding to effector cells. Bet v 1-specific IgG subclasses, IgA and IgM levels were measured by ELISA, and basophil histamine release was determined in whole blood samples. Intradermal skin testing was performed with the end-point titration method. Results Our study demonstrates on the molecular level that the concentrations of allergen-specific IgE antibodies capable of binding to Fc,RI and biological sensitivities are not necessarily associated. A moderate association was found between cutaneous and basophil sensitivity. Conclusion Our results highlight the quantitative discrepancies and limitations of the present diagnostic tools in allergy, even when using a single allergenic molecule. The quantity of allergen-specific serum IgE is only one component of far more complex cellular systems (i.e. basophil-based tests, skin tests) used as indirect diagnostic tests for IgE-mediated allergic sensitivity. [source] Nasal challenges with recombinant derivatives of the major birch pollen allergen Bet v 1 induce fewer symptoms and lower mediator release than rBet v 1 wild-type in patients with allergic rhinitisCLINICAL & EXPERIMENTAL ALLERGY, Issue 10 2002M. Van Hage-Hamsten Summary Background Genetic engineering of the major birch pollen allergen (Bet v 1) has led to the generation of recombinant Bet v 1 derivatives with markedly reduced IgE-binding capacity, but with retained T cell activating ability. Objective To compare the mucosal reactivity to rBet v 1 derivatives with rBet v 1 wild-type as basis for new therapeutic strategies for birch pollen allergy based on mucosal tolerance induction. Methods Outside the pollen season, 10 patients with birch pollen allergic rhinitis and mild asthma underwent four nasal challenge-sessions in a randomized, double-blind, and cross-over design, employing increasing doses of rBet v 1 fragment mix, rBet v 1 trimer, rBet v 1 wild-type and diluent (albumin). Nasal lavage fluids (NAL) were collected before the challenge-series as well as 10 min, 4 and 24 h thereafter. Nasal lavage fluid levels of tryptase as well as EPO and ECP were measured as indices of mast cell and eosinophil activity, respectively. Results All 10 patients tolerated the highest accumulated dose, 8.124 µg, when challenged with rBet v 1 trimer, eight with rBet v 1 fragments compared to one when challenged with rBet v 1 wild-type. No late phase reactions were observed. The change in tryptase levels (pre-challenge vs. 10 min) was significantly lower after challenges with rBet v 1 trimer and rBet v 1 fragments than with rBet v 1 wild-type. The change in EPO/ECP concentration pre-challenge versus 4 h post-challenge was lower for rBet v 1 trimer and the change was significantly lower when pre-challenge versus 24 h post-challenge to rBet v 1 fragments and rBet v 1 wild-type was examined. Conclusion The derivatives induced significantly fewer symptoms and lower mast cell and eosinophil activation than rBet v 1 wild-type upon application to the nasal mucosa. They could in the future be candidates for immunotherapy based on mucosal tolerance induction. [source] |