Trap Distribution (trap + distribution)

Distribution by Scientific Domains


Selected Abstracts


Fabrication and analysis of polymer field-effect transistors

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 6 2004
S. Scheinert
Abstract Parameters of organic field-effect transistors (OFET) achieved in recent years are promising enough for R & D activities towards a commercial low-cost polymer electronics. In spite of the fast progress, preparations dominated by trial and error are concentrated essentially on higher mobility polymers and shorter channel patterning, and the analysis of measured data is based on oversimplified models. Here ways to professionalize the research on polymer field-effect transistors are discussed exploiting experience accumulated in microelectronics. First of all, designing the devices before fabricating and subsequently analyzing them requires appropriate modelling. Almost independently from the nature of the transport process, the device physics is basically described by the drift-diffusion model, combined with non-degenerate carrier statistics. Therefore, with a modified interpretation of the so-called effective density of states, existing simulation tools can be applied, except for special cases which are discussed. Analytical estimates are helpful already in designing devices, and applied to experimental data they yield input parameters for the numerical simulations. Preparations of OFET's and capacitors with poly(3-ocylthiophene) (P3OT), poly(3-dodecylthiophene) P3HT, Arylamino-poly-(phenylene-vinylene) (PPV), poly(2-methoxy, 5 ethyl (2, hexyloxy) paraphenylenevinylene) MEH-PPV, and pentacene from a soluble precursor are described, with silicon dioxide (SiO2) or poly(4-vinylphenol) (P4VP) as gate insulator, and with rather different channel length. We demonstrate the advantage of combining all steps from design/fabrication to analysis of the experimental data with analytical estimates and numerical simulation. Of special importance is the connection between mobility, transistor channel length, cut-off frequency and operation voltage, which was the starting point for the development of a low-cost fabrication of high-performance submicrometer OFET's by an underetching technique. Finally results of simulation studies are presented concerning the formation of inversion layers, the influence of a trap distribution (as in the a-Si model) and of different types of source/drain contacts on top and bottom contact OFET's, and short-channel effects in submicrometer devices. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Phosphorescence of SiO2 optical fibres doped with Ce3+ ions

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 3 2007
I. Veronese
Abstract Phosphorescence emitted by a new dosimetric system based on a SiO2 optical fibre doped with Ce3+ ions was investigated. The defects in the matrix that, acting as electron traps, originate the phosphorescence signal were studied by means of thermally stimulated luminescence in the temperature interval 313-533 K. A continuous trap distribution with activation energies extending from 0.8 to 1.5 eV was observed. On the basis of these findings, the temperature dependence of the shape of isothermal phosphorescence decay was analysed and the corresponding spectrum was compared with that of radioluminescence. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Diffusion-Influenced Reversible Trapping Problem in the Presence,of,an,External Field

CHEMISTRY - AN ASIAN JOURNAL, Issue 1-2 2006
Soohyung Park
Abstract We investigate the field effect on the diffusion-influenced reversible trapping problem in one dimension. The exact Green function for a particle undergoing diffusive motion between two static reversible traps with a constant external field is obtained. From the Green function, we derive the various survival probabilities. Two types of trap distribution for the many-body problem are considered, the periodic and random distributions. The mean survival probability is obtained for the crossing-forbidden case for the two types of trap distribution. For the periodic distribution it decays exponentially. For the random trap distribution, similar to the irreversible case, there exists a critical field strength at which the long time asymptotic behavior undergoes a kinetic transition from the power law to exponential behaviors. The difference between equilibrium concentrations for the two types of trap distribution due to the fluctuation effect of trap concentration vanishes as the field strength increases. [source]


Comparison of Trap-state Distribution and Carrier Transport in Nanotubular and Nanoparticulate TiO2 Electrodes for Dye-Sensitized Solar Cells

CHEMPHYSCHEM, Issue 10 2010
Raheleh Mohammadpour
Abstract Dye-sensitized solar cells (DSCs) with nanotubular TiO2 electrodes of varying thicknesses are compared to DSCs based on conventional nanoparticulate electrodes. Despite the higher degree of order in one-dimensional nanotubular electrodes, electron transport times and diffusion coefficients, determined under short-circuit conditions, are comparable to those of nanoparticulate electrodes. The quasi-Fermi level, however, is much lower in the nanotubes, suggesting a lower concentration of conduction band electrons. This provides evidence for a much higher diffusion coefficient for conduction band electrons in nanotubes than in nanoparticulate films. The electron lifetime and the diffusion length are significantly longer in nanotubular TiO2 electrodes than in nanoparticulate films. Nanotubular electrodes have a trap distribution that differs significantly from nanoparticulate electrodes; they possess relatively deeper traps and have a characteristic energy of the exponential distribution that is more than two times that of nanoparticulate electrodes. [source]