Tracer Dye (tracer + dye)

Distribution by Scientific Domains


Selected Abstracts


Degeneration of pontine mossy fibres during cerebellar development in weaver mutant mice

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2002
Miwako Ozaki
Abstract In weaver mutant mice, substitution of an amino acid residue in the pore region of GIRK2, a subtype of the G-protein-coupled inwardly rectifying K+ channel, changes the properties of the homomeric channel to produce a lethal depolarized state in cerebellar granule cells and dopaminergic neurons in substantia nigra. Degeneration of these types of neurons causes strong ataxia and Parkinsonian phenomena in the mutant mice, respectively. On the other hand, the mutant gene is also expressed in various other brain regions, in which the mutant may have effects on neuronal survival. Among these regions, we focused on the pontine nuclei, the origin of the pontocerebellar mossy fibres, projecting mainly into the central region of the cerebellar cortex. The results of histological analysis showed that by P9 the number of neurons in the nuclei was reduced in the mutant to about one half and by P18 to one third of those in the wild type, whereas until P7 the number were about the same in wild-type and weaver mutant mice. Three-dimensional reconstruction of the nuclei showed a marked reduction in volume and shape of the mutant nuclei, correlating well with the decrease in neuronal number. In addition, DiI (a lipophilic tracer dye) tracing experiments revealed retraction of pontocerebellar mossy fibres from the cerebellar cortex after P5. From these results, we conclude that projecting neurons in the pontine nuclei, as well as cerebellar granule cells and dopaminergic neurons in substantia nigra, strongly degenerate in weaver mutant mice, resulting in elimination of pontocerebellar mossy fibres during cerebellar development. [source]


Induction of neuropeptides in skin innervating sensory neurons by stress and nerve growth factor as a possible reason for hair growth alteration

EXPERIMENTAL DERMATOLOGY, Issue 9 2004
A. Kuhlmei
Recently, we introduced a mouse model launching experimental evidence for stress-induced hair growth inhibition (HGI), pointing to the existence of a brain-hair follicle axis (BFA). We suggested that nerve growth factor (NGF), besides neuropeptide substance P (SP), is a candidate mediator along the BFA. Published data further indicate that stress-related neuropeptides, e.g. calcitonin gene-related peptide (CGRP) and SP may be involved in HGI. SP and CGRP are synthesized in dorsal root ganglia (DRG) and released after axonal transport in the skin. Thus, aim of the present study was to investigate the effect of stress or subcutaneous injection of NGF, which mimics stress and regulates neuropeptide genes in sensory neurons, on the expression of SP and CGRP in DRG. Anagen was induced in C57BL/6 mice by depilation and retrograde tracing was employed on day 9 post-depilation (PD). On day 14 PD, mice were either exposed to sound stress (n = 4) injected subcutaneously with NGF (n = 4) or served as control (n = 4). On day 16 PD, DRG (mean of 30/mouse) were harvested and SP and CGRP in skin-specific sensory neurons, as identified by the tracer dye, were labelled by immunohistochemistry and counted. Stress exposure as well as NGF injection leads to a significant induction of SP and CGRP in retrograde-labelled neurons. This allows us to conclude that sensitive dermal nerve fibres are likely to originate from the presently identified neuropeptide-positive neurons. Peripheral activation of SP-expressing afferent nerve fibres via NGF-dependent pathways may cause neurogenic inflammation, eventually resulting in HGI. [source]


Moderate Bioclogging Leading to Preferential Flow Paths in Biobarriers

GROUND WATER MONITORING & REMEDIATION, Issue 3 2006
Katsutoshi Seki
Permeable reactive barriers (PRBs) are an alternative technique for the biological in situ remediation of ground water contaminants. Nutrient supply via injection well galleries is supposed to support a high microbial activity in these barriers but can ultimately lead to changes in the hydraulic conductivity of the biobarrier due to the accumulation of biomass in the aquifer. This effect, called bioclogging, would limit the remediation efficiency of the biobarrier. To evaluate the effects bioclogging can have on the flow field of a PRB, flow cell experiments were carried out in the laboratory using glass beads as a porous medium. Two types of flow cells were used: a 20- × 1- × 1-cm cell simulating a single injection well in a one-dimensional flow field and a 20- × 10- × 1-cm cell simulating an injection well gallery in a two-dimensional flow field. A mineral medium was injected to promote microbial growth. Results of 9 d of continuous operation showed that conditions, which led to a moderate (50%) reduction of the hydraulic conductivity of the one-dimensional cell, led to a preferential flow pattern within the simulated barrier in the two-dimensional flow field (visualized by a tracer dye). The bioclogging leading to this preferential flow pattern did not change the hydraulic conductivity of the biobarrier as a whole but resulted in a reduced residence time of water within barrier. The biomass distribution measured after 9 d was consistent with the observed clogging effects showing step spatial gradients between clogged and unclogged regions. [source]


Chimeric honeybees (Apis mellifera) produced by transplantation of embryonic cells into pre-gastrula stage embryos and detection of chimerism by use of microsatellite markers

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2006
M. Bergem
Abstract The production of chimeras, by use of cell transplantation, has proved to be highly valuable in studies of development by providing insights into cell fate, differentiation, and developmental potential. So far, chimeric honeybees have been created by nuclear transfer technologies. We have developed protocols to produce chimeric honeybees by use of cell transplantation. Embryonic cells were transplanted between pre-gastrula stage embryos (32,34 hr after oviposition) and hatched larvae were reared in vitro for 4 days. Chimeric individuals were detected by use of microsatellite analysis and a conservative estimation approach. 4.8% of embryos, posteriorly injected with embryonic cells, developed into chimeric honeybee larvae. By injection of cells pre-stained with fluorescent cell tracer dye, we studied the integration of transplanted cells in the developing embryos. Number of injected cells varied from 0 to 50 and cells remained and multiplied mainly in the area of injection. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source]


Cranial neural crest cell migration in the Australian lungfish, Neoceratodus forsteri

EVOLUTION AND DEVELOPMENT, Issue 4 2000
Pierre Falck
SUMMARY A crucial role for the cranial neural crest in head development has been established for both actinopterygian fishes and tetrapods. It has been claimed, however, that the neural crest is unimportant for head development in the Australian lungfish (Neoceratodus forsteri ,), a member of the group (Dipnoi) which is commonly considered to be the living sister group of the tetrapods. In the present study, we used scanning electron microscopy to study cranial neural crest development in the Australian lungfish. Our results, contrary to those of Kemp, show that cranial neural crest cells do emerge and migrate in the Australian lungfish in the same way as in other vertebrates, forming mandibular, hyoid, and branchial streams. The major difference is in the timing of the onset of cranial neural crest migration. It is delayed in the Australian lungfish in comparison with their living sister group the Lissamphibia. Furthermore, the delay in timing between the emergence of the hyoid and branchial crest streams is very long, indicating a steeper anterior-posterior gradient than in amphibians. We are now extending our work on lungfish head development to include experimental studies (ablation of selected streams of neural crest cells) and fate mapping (using fluoresent tracer dyes such as DiI) to document the normal fate as well as the role in head patterning of the cranial neural crest in the Australian lungfish. [source]