Home About us Contact | |||
TRP Channels (trp + channel)
Selected AbstractsThe calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils,ACTA PHYSIOLOGICA, Issue 1 2009N. Damann Abstract Aim:, The role of the calcium-conducting ion channel transient receptor potential canonical 6 (TRPC6) in macrophage inflammatory protein-2 (MIP-2) induced migration of mouse neutrophils was investigated. Methods:, Neutrophil granulocytes isolated from murine bone marrow of wild-type (TRPC6+/+) and TRPC6 knockout (TRPC6,/,) mice were tested for the presence of TRPC6 channel expression using quantitative real-time polymerase chain reactions and immunocytochemistry. The effect of different stimuli (e.g. MIP-2, 1-oleoyl-2-acetyl-sn-glycerol, formyl-methionyl-leucyl-phenylalanin) on migration of isolated neutrophils was tested by two-dimensional (2D) migration assays, phalloidin staining and intracellular calcium imaging. Results:, We found that neutrophil granulocytes express TRPC6 channels. MIP-2 induced fast cell migration of isolated neutrophils in a 2D cell-tracking system. Strikingly, MIP-2 was less potent in neutrophils derived from TRPC6,/, mice. These cells showed less phalloidin-coupled fluorescence and the pattern of cytosolic calcium transients was altered. Conclusions:, We describe in this paper for the first time a role for transient receptor potential (TRP) channels in migration of native lymphocytes as a new paradigm for the universal functional role of TRPs. Our data give strong evidence that TRPC6 operates downstream to CXC-type Gq -protein-coupled chemokine receptors upon stimulation with MIP-2 and is crucial for the arrangement of filamentous actin in migrating neutrophils. This is a novel cell function of TRP channel beyond their well-recognized role as universal cell sensors. [source] Genistein potentiates activity of the cation channel TRPC5 independently of tyrosine kinasesBRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2010Ching-On Wong Background and purpose:, TRPC5 is a Ca2+ -permeable channel with multiple modes of activation. We have explored the effects of genistein, a plant-derived isoflavone, on TRPC5 activity, and the mechanism(s) involved. Experimental approach:, Effects of genistein on TRPC5 channels were investigated in TRPC5-over-expressing human embryonic kidney 293 (HEK) cells and bovine aortic endothelial cells (BAECs) using fluorescent Ca2+ imaging and electrophysiological techniques. Key results:, In TRPC5-over-expressing HEK cells, genistein stimulated TRPC5-mediated Ca2+ influx, concentration dependently (EC50= 93 µM). Genistein and lanthanum activated TRPC5 channels synergistically. Effects of genistein on TRPC5 channels were mimicked by daidzein (100 µM), a genistein analogue inactive as a tyrosine kinase inhibitor, but not by known tyrosine kinase inhibitors herbimycin (2 µM), PP2 (20 µM) and lavendustin A (10 µM). Action of genistein on TRPC5 channels was not affected by an oestrogen receptor inhibitor ICI-182780 (50 µM) or a phospholipase C inhibitor U73122 (10 µM), suggesting genistein did not act through oestrogen receptors or phospholipase C. In BAECs, genistein (100 µM) stimulated TRPC5-mediated Ca2+ influx. In patch clamp studies, both genistein (50 µM) and daidzein (50 µM) augmented TRPC5-mediated whole-cell cation current in TRPC5 over-expressing HEK cells. Genistein stimulated TRPC5 channel activity in excised inside-out membrane patch, suggesting that its action was relatively direct and did not require cytosolic factors. Conclusions and implications:, The present study is the first to demonstrate stimulation of a TRP channel by isoflavones. Genistein is a lipophilic compound able to stimulate TRPC5 activity in TRPC5-over-expressing HEK cells and in native vascular endothelial cells. [source] Transient receptor potential A1 mediates acetaldehyde-evoked pain sensationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2007Sangsu Bang Abstract Six transient receptor potential (TRP) ion channels expressed in the sensory afferents play an important role as body thermosensors and also as peripheral pain detectors. It is known that a number of natural compounds specifically activate those sensory neuronal TRP channels, and a well-known example is cinnamaldehyde for TRPA1. Here we show that human and mouse TRPA1 are activated by acetaldehyde, an intermediate substance of ethanol metabolism, in the HEK293T cell heterologous expression system and in cultured mouse trigeminal neurons. Acetaldehyde failed to activate other temperature-sensitive TRP channels expressed in sensory neurons. TRPA1 antagonists camphor and gadolinium, and a general TRP blocker ruthenium red inhibited TRPA1 activation by acetaldehyde. Camphor, gadolinium and ruthenium red also suppressed the acute nociceptive behaviors induced by the intradermal administration of acetaldehyde into the mouse footpads. Intradermal co-application of prostaglandin E2 and acetaldehyde greatly potentiated the acetaldehyde-induced nociceptive responses, and this effect was reversed by treatment with the TRPA1 antagonist camphor. These results suggest that acetaldehyde causes nociception via TRPA1 activation. Our data may also help elucidate the mechanisms underlying acetaldehyde-related pathological symptoms such as hangover pain. [source] Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphateJOURNAL OF NEUROCHEMISTRY, Issue 1 2007Jan Benedikt Abstract Ethanol has opposite effects on two members of the transient receptor potential (TRP) family of ion channels: it inhibits the cold-menthol receptor TRPM8, whereas it potentiates the activity of the heat- and capsaicin-gated vanilloid receptor TRPV1. Both thermosensitive cation channels are critically regulated by the membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2). The effects of this phospholipid on TRPM8 and TRPV1 are also functionally opposite: PIP2 is necessary for the activation of TRPM8 but it constitutively inhibits TRPV1. This parallel led us to investigate the possible role of PIP2 in the ethanol-induced modulation of rat TRPM8, heterologously expressed in HEK293T cells. In this study, we characterize the effects of ethanol (0.1,10%) on whole-cell currents produced by menthol and by low temperature (< 17°C). We show that the inclusion of PIP2 in the intracellular solution results in a strong reduction in the ethanol-induced inhibition of menthol-evoked responses. Conversely, intracellular dialysis with anti-PIP2 antibody or with the PIP2 scavenger, poly l -lysine, enhanced the ethanol-induced inhibition of TRPM8. A 20 min pre-incubation with wortmannin caused a modest decrease in inhibition produced by 1% ethanol, indicating that the ethanol-induced inhibition is not mediated by lipid kinases. These findings suggest that ethanol inhibits TRPM8 by weakening the PIP2,TRPM8 channel interaction; a similar mechanism may contribute to the ethanol-mediated modulation of some other PIP2 -sensitive TRP channels. [source] Sensor Mechanism and Afferent Signal Transduction of the Urinary Bladder: Special Focus on transient receptor potential Ion ChannelsLUTS, Issue 2 2010Masayuki TAKEDA In the urine storage phase, mechanical stretch stimulates bladder afferents. These urinary bladder afferent sensory nerves consist of small diameter A, - and C-fibers running in the hypogastic and pelvic nerves. Neuroanatomical studies have revealed a complex neuronal network within the bladder wall. The exact mechanisms that underline mechano-sensory transduction in bladder afferent terminals remain ambiguous; however, a wide range of ion channels (e.g. TTX-resistant Na+ channels, Kv channels and hyperpolarization-activated cyclic nucleotidegated cation channels, degenerin/epithelial Na+ channel), and receptors (e.g. TRPV1, TRPM8, TRPA1, P2X2/3, etc.) have been identified at bladder afferent terminals and have implicated in the generation and modulation of afferent signals, which are elcited by a wide range of bladder stimulations including physiological bladder filling, noxious distension, cold, chemical irritation and inflammation. The mammalian transient receptor potential (TRP) family consists of 28 channels that can be subdivided into six different classes: TRPV (Vanilloid), TRPC (Canonical), TRPM (Melastatin), TRPP (Polycystin), TRPML (Mucolipin), and TRPA (Ankyrin). TRP channels are activated by a diversity of physical (voltage, heat, cold, mechanical stress) or chemical (pH, osmolality) stimuli and by binding of specific ligands, enabling them to act as multifunctional sensors at the cellular level. TRPV1, TRPV2, TRPV4, TRPM8, and TRPA1 have been described in different parts of the urogenital tract. Although only TRPV1 among TRPs has been extensively studied so far, more evidence is slowly accumulating about the role of other TRP channels, ion channels, and receptors in the pathophysiology of the urogenital tract, and may provide a new strategy for the treatment of bladder dysfunction. [source] TRP channels as therapeutic targets: hot property, or time to cool down?NEUROGASTROENTEROLOGY & MOTILITY, Issue 8 2006G. A. Hicks Abstract,Transient receptor potential (TRP) channels are involved in a wide range of processes ranging from osmoregulation, thermal, chemical and sensory signalling, and potentially in the pathophysiology associated with several diseases. Patents for TRPV1 antagonists alone span diseases ranging across chronic pain, neuropathies, headache, bladder disorders, irritable bowel syndrome (IBS), gastro-oesophageal reflux disease (GORD), and cough amongst others. Most research is currently focused around those TRP channels involved in sensory processes, with the neurogastroenterology and motility field playing a major role, for example, through recent discoveries of differential roles for TRPV receptor subtypes in chemosensitivity and mechanosensitivity of visceral afferents. At this time, however, the understanding of the role of even TRPV1, let alone most of the other TRP channels in disease pathophysiology is only just beginning, and although enthusiasm around the therapeutic potential for modulators of these channels is understandable, based largely upon the experience of the effects of natural ligands, such as capsaicin, the sheer size and complexity of the TRP family as a whole must serve as a warning against expecting too much too soon from drug discovery efforts. [source] On the origin of bladder sensing: Tr(i)ps in urology,NEUROUROLOGY AND URODYNAMICS, Issue 4 2008Wouter Everaerts Abstract The mammalian TRP family consists of 28 channels that can be subdivided into 6 different classes: TRPV (vanilloid), TRPC (canonical), TRPM (Melastatin), TRPP (Polycystin), TRPML (Mucolipin), and TRPA (Ankyrin). TRP channels are activated by a diversity of physical (voltage, heat, cold, mechanical stress) or chemical (pH, osmolality) stimuli and by binding of specific ligands, enabling them to act as multifunctional sensors at the cellular level. Currently, a lot of scientific research is devoted to these channels and their role in sensing mechanisms throughout the body. In urology, there's a growing conviction that disturbances in afferent (sensory) mechanisms are highly important in the pathogenesis of functional problems. Therefore, the TRP family forms an interesting new target to focus on. In this review we attempt to summarize the existing knowledge about TRP channels in the urogenital tract. So far, TRPV1, TRPV2, TRPV4, TRPM8, and TRPA1 have been described in different parts of the urogenital tract. Although only TRPV1 (the vanilloid receptor) has been extensively studied so far, more evidence is slowly accumulating about the role of other TRP channels in the (patho)physiology of the urogenital tract. Neurourol. Urodynam. 27:264,273, 2008. © 2007 Wiley-Liss, Inc. [source] Involvement of nonselective cation channels in the depolarisation initiating vasomotionCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2010Stephanie E Wölfle Summary 1. Coordinated oscillations in diameter occur spontaneously in cerebral vessels and depend on the opening of voltage dependent calcium channels. However, the mechanism that induces the initial depolarisation has remained elusive. We investigated the involvement of canonical transient receptor potential (TRPC) channels, which encode nonselective cation channels passing Na+ and Ca2+ currents, by measuring changes in diameter, intracellular Ca2+ and membrane potential in branches of juvenile rat basilar arteries. 2. Removal of extracellular Ca2+ abolished vasomotion and relaxed arteries, but paradoxically produced depolarisation. 3. Decrease in temperature to 24°C or inhibition of phospholipase C (PLC) abolished vasomotion, hyperpolarised and relaxed arteries and decreased intracellular Ca2+. 4. Reduction in the driving force for Na+ through decrease in extracellular Na+ produced similar effects and prevented the depolarisation elicited by removal of extracellular Ca2+. 5. Nonselective TRP channel blockers, SKF96365 and gadolinium, mimicked the effects of inhibition of the PLC pathway. 6. Depolarisation of vessels in which TRP channels were blocked with SKF96365 reinstated vascular tone and vasomotion. 7. Quantitative polymerase chain reaction revealed TRPC1 as the predominantly expressed TRPC subtype. 8. Incubation with a function blocking TRPC1 antibody delayed the onset of vasomotion. 9. We conclude that nonselective cation channels contribute to vasoconstriction and vasomotion of cerebral vessels by providing an Na+ -induced depolarisation that activates voltage dependent calcium channels. Our antibody data suggest the involvement of TRPC1 channels that might provide a target for treatment of therapy-refractory vasospasm. [source] |