Tropical South America (tropical + south_america)

Distribution by Scientific Domains


Selected Abstracts


Regional assessment of the impact of climatic change on the distribution of a tropical conifer in the lowlands of South America

DIVERSITY AND DISTRIBUTIONS, Issue 6 2007
Marie-Pierre Ledru
Abstract For decades, palynologists working in tropical South America are using the genus Podocarpus as a climate indicator although without referring to any modern data concerning its distribution and limiting factors. With the aim to characterize the modern and past distribution of the southern conifer Podocarpus in Brazil and to obtain new information on the distribution of the Atlantic rainforest during the Quaternary, we examined herbarium data to locate the populations of three Brazilian endemic Podocarpus species: P. sellowii, P. lambertii, and P. brasiliensis, and extracted DNA from fresh leaves from 26 populations. Our conclusions are drawn in the light of the combination of these three disciplines: botany, palynology, and genetics. We find that the modern distribution of endemic Podocarpus populations shows that they are widely dispersed in eastern Brazil, from north to south and reveals that the expansion of Podocarpus recorded in single Amazonian pollen records may have come from either western or eastern populations. Genetic analysis enabled us to delimit regional expansion: between 5° and 15° S grouping northern and central populations of P. sellowii expanded c. 16,000 years ago; between 15° and 23° S populations of either P. lambertii or sellowii expanded at different times since at least the last glaciation; and between 23° and 30° S, P. lambertii appeared during the recent expansion of the Araucaria forest. The combination of botany, pollen, and molecular analysis proved to be a rapid tool for inferring distribution borders for sparse populations and their regional evolution within tropical ecosystems. Today the refugia of rainforest communities we identified are crucial hotspots to allow the Atlantic forest to survive under unfavourable climatic conditions and, as such, offer the only possible opportunity for this type of forest to expand in the event of a future climate change. [source]


Spatial and temporal variabilities of rainfall in tropical South America as derived from Climate Prediction Center merged analysis of precipitation

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 2 2002
H. Matsuyama
Abstract We investigated the spatial and temporal variabilities of Climate Prediction Center merged analysis of precipitation (CMAP) in tropical South America from 1979 to 1998. First, we validated CMAP using other hydrometeorological data. In comparison with the high-density precipitation data of the Global Historical Climatology Network (GHCN) Ver. 2, CMAP reproduces the spatial pattern well, although it underestimates (overestimates) heavy (light) precipitation. CMAP also reproduces the interannual variability well, compared with the discharge data of the River Amazon. Next, we applied the rotated empirical orthogonal function (REOF) to CMAP after subtracting the annual cycle. Simultaneous and lag correlations were calculated among the scores of REOFs 1 to 4, the southern oscillation index, and the dipole index of the Atlantic. REOF 1 (15%) represents the north,south pattern that exhibits the maximum precipitation in the summer hemisphere. REOF 2 (12%) indicates the gradual decrease of precipitation in the northern part of tropical South America, reflecting the effect of the Atlantic. REOF 3 (11%) exhibits an east,west pattern related to El Niño. In REOF 4 (7%), the centre of the factor loading is located in Colombia, and the score jumps abruptly around 1985,86. The Lepage test detected the abrupt increase of CMAP in 1985,86 around Colombia. Since such a jump is not found in GHCN Ver. 2, the discontinuous changes of CMAP and REOF 4 around 1985,86 are artificial and peculiar to CMAP. In this region, CMAP should be applied with caution when evaluating recent trends and the interannual variability. The importance of the abrupt increase of precipitation around Colombia is also addressed. Copyright © 2002 Royal Meteorological Society. [source]


Review of plant biogeographic studies in Brazil

JOURNAL OF SYSTEMATICS EVOLUTION, Issue 5 2009
Pedro FIASCHI
Abstract, Molecular phylogenetic studies have become a major area of interest in plant systematics, and their impacts on historical biogeographic hypotheses are not to be disregarded. In Brazil, most historical biogeographic studies have relied on animal phylogenies, whereas plant biogeographic studies have largely lacked a phylogenetic component, having a limited utility for historical biogeography. That country, however, is of great importance for most biogeographic studies of lowland tropical South America, and it includes areas from a number of biogeographic regions of the continent. Important biogeographic reports have been published as part of phylogenetic studies, taxonomic monographs, and regional accounts for small areas or phytogeographic domains, but the available information is subsequently scattered and sometimes hard to find. In this paper we review some relevant angiosperm biogeographic studies in Brazil. Initially we briefly discuss the importance of other continents as source areas for the South American flora. Then we present a subdivision of Brazil into phytogeographic domains, and we cite studies that have explored the detection of biogeographic units (areas of endemism) and how they are historically related among those domains. Examples of plant taxa that could be used to test some biogeographic hypotheses are provided throughout, as well as taxa that exemplify several patterns of endemism and disjunction in the Brazilian angiosperm flora. [source]