Toxic Side Effects (toxic + side_effects)

Distribution by Scientific Domains


Selected Abstracts


Treatment of congestive heart failure , current status of use of digitoxin

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue S2 2001
G. G. Belz
Digitalis glycosides exert a positive inotropic effect, i.e. an increase in myocardial contractility associated with a prolongation of relaxation period, and glycosides lower the heart rate (negative chronotropic), impede stimulus conduction (negative dromotropic) and promote myocardial excitability (positive bathmotropic). They seem to influence the activities of both the vagal and the sympathetic systems. Digitalis glycosides that belong to different substance classes are closely comparable concerning pharmacodynamics but differ substantially in regard to pharmacokinetics. Digoxin and its derivatives are less lipophilic, show lower protein binding and shorter half-life, are mainly eliminated via the kidney and accumulate rather rapidly in cases of insufficient kidney function. Digitoxin is highly lipophilic and extensively bound to plasma proteins, has a longer half-life, is mainly eliminated in the metabolized state via urine and faeces and does not accumulate in kidney dysfunction. As a result of a more stable pharmacokinetic profile, the incidence of toxic side effects seems to be lower with digitoxin than with digoxin. Since the beginning of the 1990s, the antagonists of the RAAS qualified as the standard treatment for congestive heart failure, often in combination with diuretics, vasodilators or ,-antagonists. However, the important role of digitalis glycosides as therapeutic comedication or alternative was never denied, especially in atrial fibrillation with tachycardia. The PROVED and RADIANCE trials proved a detrimental effect of the withdrawal of digoxin therapy on exercise capacity, left-ventricular ejection fraction and clinical symptoms. The DIG trial revealed that digoxin comedication in sinus rhythm patients with congestive heart failure was associated with a lower morbidity (as taken from death or hospitalization because of worsening heart failure) and an unchanged overall mortality , being a unique feature among the available inotropic drugs. Comparable studies for digitoxin have not yet been performed but, because of its higher pharmacological stability, it might well be associated with even more advantages in this regard than digoxin. [source]


Dialysate concentration and pharmacokinetics of 2F-Ara-A in a patient with acute renal failure

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 6 2005
Jan T. Kielstein
Abstract:, Fludarabine is frequently used for treatment of B-cell chronic lymphocytic leukemia and in conditioning regimes for hematopoietic cell transplantations. The total body clearance of the principal metabolite 2-fluoro-ara-A (2F-Ara-A) correlates with the creatinine clearance. We report data on total dialysate concentration as well as pharmacokinetics of 2F-Ara-A in a patient with anuric acute renal failure. On three consecutive days the patient received a daily dose of 80 mg (40 mg/m2) fludarabine and underwent three consecutive extended (daily) dialysis (ED) sessions. ED removed a considerable amount of the drug. The average dialysis clearance was 33.85 ml/min which is about 25% of the clearance in patients without renal failure. No toxic side effects of the treatment were observed. This case suggests that fludarabine treatment can be considered in patients requiring dialysis if dose reduction and adequate removal of the drug by hemodialysis is provided. [source]


The protective effect of N -acetylcysteine against cyclosporine A-induced hepatotoxicity in rats

JOURNAL OF APPLIED TOXICOLOGY, Issue 1 2008
Hasan Kaya
Abstract The immunosuppressive agent cyclosporine A (CsA) has been reported to exert measurable hepatotoxic effects. One of the causes leading to hepatotoxicity is thought to be reactive oxygen radical formation. The aim of this study was to investigate the effects of N -acetylcysteine (NAC) treatment on CsA-induced hepatic damage by both analysing superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), aspartate aminotransferase (AST) and alanine transaminase (ALT) activities with malondialdehyde (MDA) and nitric oxide (NO) levels, and using an histological approach. CsA administration produced a decrease in hepatic SOD activity, and co-administration of NAC with CsA resulted in an increase in SOD activity. MDA and NO levels increased in the CsA group and NAC treatment prevented those increases. A significant elevation in serum AST and ALT activities was observed in the CsA group, and when NAC and CsA were co-administered, the activities of AST and ALT were close to the control levels. CsA treatment caused evident morphological alterations. Control rats showed no abnormality in the cytoarchitecture of the hepatic parenchyma. The co-administration of NAC with CsA showed no signs of alteration and the morphological pattern was almost similar to the control group. In conclusion, CsA induced liver injury and NAC treatment prevented the toxic side effects induced by CsA administration through the antioxidant and radical scavenging effects of NAC. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Triton-X-100-modified polymer and microspheres for reversal of multidrug resistance

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2001
Zhi Liu
Triton X-100 is a non-ionic detergent capable of reversing multidrug resistance (MDR) due to its interaction with cell membranes. However, it interacts with cells in a non-specific way, causing cytotoxicity. This work aimed to develop polymeric chemosensitizers that possess the ability to reverse MDR and lower toxic side effects. When being delivered to tumours, the polymeric chemosensitizers may also have longer retention times in tumours than the free detergent. Triton-X-100-immobilized dextran microspheres (T-MS) and inulin (T-IN) were prepared and characterized. Their cytotoxicity against multidrug-resistant Chinese hamster ovary cells (CHRC5) was compared with that of free Triton X-100 solutions. The in-vitro effect of the products on 3H-vinblastine accumulation by CHRC5 cells was determined. Both T-MS and T-IN showed a marked decrease in the cytotoxicity, as compared with free Triton solutions at equivalent concentrations. Drug accumulation by CHRC5 cells was increased over two fold in the presence of T-MS or T-IN. These results suggest that polymeric drug carriers with MDR-reversing capability and lower cytotoxicity may be prepared by immobilization of chemosensitizers. [source]


Fast and automated functional classification with MED-SuMo: An application on purine-binding proteins

PROTEIN SCIENCE, Issue 4 2010
Olivia Doppelt-Azeroual
Abstract Ligand,protein interactions are essential for biological processes, and precise characterization of protein binding sites is crucial to understand protein functions. MED-SuMo is a powerful technology to localize similar local regions on protein surfaces. Its heuristic is based on a 3D representation of macromolecules using specific surface chemical features associating chemical characteristics with geometrical properties. MED-SMA is an automated and fast method to classify binding sites. It is based on MED-SuMo technology, which builds a similarity graph, and it uses the Markov Clustering algorithm. Purine binding sites are well studied as drug targets. Here, purine binding sites of the Protein DataBank (PDB) are classified. Proteins potentially inhibited or activated through the same mechanism are gathered. Results are analyzed according to PROSITE annotations and to carefully refined functional annotations extracted from the PDB. As expected, binding sites associated with related mechanisms are gathered, for example, the Small GTPases. Nevertheless, protein kinases from different Kinome families are also found together, for example, Aurora-A and CDK2 proteins which are inhibited by the same drugs. Representative examples of different clusters are presented. The effectiveness of the MED-SMA approach is demonstrated as it gathers binding sites of proteins with similar structure-activity relationships. Moreover, an efficient new protocol associates structures absent of cocrystallized ligands to the purine clusters enabling those structures to be associated with a specific binding mechanism. Applications of this classification by binding mode similarity include target-based drug design and prediction of cross-reactivity and therefore potential toxic side effects. [source]


Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging,

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 10 2004
Rüdiger Lawaczeck
Abstract The mainstream magnetic iron oxide particles used as contrast media for magnetic resonance (MR) imaging are composed of a magnetic iron oxide core surrounded by a dextran or carboxydextran coat. The core size ranges from 2 nm to less than 10 nm, and the hydrodynamic diameter ranges from 20 nm to about 120 nm. The coat prevents aggregation and sedimentation of the particles in aqueous solutions, achieves high biological tolerance, and prevents toxic side effects. Two kinds of particles are considered: (i) large particles (>30 nm), called superparamagnetic iron oxide particles (SPIOs) for liver imaging; (ii) smaller particles (<30 nm hydrodynamic diameter), called ultrasmall SPIOs (USPIOs), e.g. for MR angiography. To characterize the particles, Mössbauer spectra are presented for the two particle ensembles. These spectra allow insight into the magnetic coupling, the valency of the iron ions and a rough estimate of the core size to be deduced. On the basis of the concentration dependence of the MR signal intensities, two applications are discussed together with two representative clinical examples. Future indications for MR diagnostics, e.g. the labeling and tracking of stem cells during stem-cell therapy control, are outlined. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis

ARTHRITIS & RHEUMATISM, Issue 1 2007
Jörg H. W. Distler
Objective Imatinib mesylate is a clinically well-tolerated small molecule inhibitor that exerts selective, dual inhibition of the transforming growth factor , (TGF,) and platelet-derived growth factor (PDGF) pathways. This study was undertaken to test the potential use of imatinib mesylate as an antifibrotic drug for the treatment of dermal fibrosis in systemic sclerosis (SSc). Methods The expression of extracellular matrix (ECM) proteins in SSc and normal dermal fibroblasts was analyzed by real-time polymerase chain reaction, Western blot, and Sircol collagen assay. Proliferation capacity was assessed with the MTT assay. Cell viability was analyzed by mitochondrial membrane potential and by annexin V/propidium iodide staining. Bleomycin-induced experimental dermal fibrosis was used to assess the antifibrotic effects of imatinib mesylate in vivo. Results Imatinib mesylate efficiently reduced basal synthesis of COL1A1, COL1A2, and fibronectin 1 messenger RNA in SSc and normal dermal fibroblasts, in a dose-dependent manner. The induction of ECM proteins after stimulation with TGF, and PDGF was also strongly and dose-dependently inhibited by imatinib mesylate. These results were confirmed at the protein level. Imatinib mesylate did not alter proliferation or induce apoptosis and necrosis in dermal fibroblasts. Consistent with the in vitro findings, imatinib mesylate reduced dermal thickness, the number of myofibroblasts, and synthesis of ECM proteins in experimental dermal fibrosis, without evidence of toxic side effects. Conclusion These data show that imatinib mesylate at biologically relevant concentrations has potent antifibrotic effects in vitro and in vivo, without toxic side effects. Considering its favorable pharmacokinetics and clinical experience with its use in other diseases, imatinib mesylate is a promising candidate for the treatment of fibrotic diseases such as SSc. [source]


A structural study of the interaction between the Dr haemagglutinin DraE and derivatives of chloramphenicol

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2009
David M. Pettigrew
Dr adhesins are expressed on the surface of uropathogenic and diffusely adherent strains of Escherichia coli. The major adhesin subunit (DraE/AfaE) of these organelles mediates attachment of the bacterium to the surface of the host cell and possibly intracellular invasion through its recognition of the complement regulator decay-accelerating factor (DAF) and/or members of the carcinoembryonic antigen (CEA) family. The adhesin subunit of the Dr haemagglutinin, a Dr-family member, additionally binds type IV collagen and is inhibited in all its receptor interactions by the antibiotic chloramphenicol (CLM). In this study, previous structural work is built upon by reporting the X-ray structures of DraE bound to two chloramphenicol derivatives: chloramphenicol succinate (CLS) and bromamphenicol (BRM). The CLS structure demonstrates that acylation of the 3-hydroxyl group of CLM with succinyl does not significantly perturb the mode of binding, while the BRM structure implies that the binding pocket is able to accommodate bulkier substituents on the N -acyl group. It is concluded that modifications of the 3-hydroxyl group would generate a potent Dr haemagglutinin inhibitor that would not cause the toxic side effects that are associated with the normal bacteriostatic activity of CLM. [source]


Gold (III) porphyrin complexes induce apoptosis and cell cycle arrest and inhibit tumor growth in colon cancer

CANCER, Issue 19 2009
Shuiping Tu MD
Abstract BACKGROUND: Gold (III) compounds have exhibited favorable antitumor properties both in vitro and in vivo. In a previous study, the authors reported that the novel gold (III) complex 1a (gold 1a) exhibited strong cytotoxicity in some tumor cell lines. In the current study, the effect of gold 1a was investigated on colon cancer cells. METHODS: The cytotoxicity of gold 1a was determined by using the 3-(4,5-dimethyl-2-thihazyl)-2,5-diphenyl-2H-tetrazolium bromide method. Flow cytometry was used to detect apoptosis and cell cycle. The expression of protein was evaluated by Western blot assay. Tumor growth in vivo was evaluated in nude mice. RESULTS: Gold 1a exhibited marked cytotoxic effects in vitro to human colon cancer, and the concentration of drug required to inhibit cell growth by 50% compared with control (IC50) values ranged from 0.2 ,M to 3.4 ,M, which represented 8.7-fold to 20.8-fold greater potency than that of cisplatin. Gold 1a significantly induced apoptosis and cell cycle arrest and cleaved caspase 3, caspase 7, and poly(ADP-ribose) polymerase; released cytochrome C, and up-regulated p53, p21, p27, and Bax. In vivo, intraperitoneal injection of gold 1a at doses of 1.5 mg/kg and 3.0 mg/kg significantly inhibited tumor cell proliferation, induced apoptosis, and suppressed colon cancer tumor growth. An acute toxicology study indicated that gold 1a at effective antitumor concentrations did not cause any toxic side effects in mice. CONCLUSIONS: The current results suggested that gold 1a may be a new potential therapeutic drug for colon cancer. Cancer 2009. © 2009 American Cancer Society. [source]


Human ovarian carcinoma cells: Histone deacetylase inhibitors exhibit antiproliferative activity and potently induce apoptosis

CANCER, Issue 12 2004
Noriyuki Takai M.D., Ph.D.
Abstract BACKGROUND Histone deacetylase inhibitors (HDACIs) can inhibit proliferation, stimulate apoptosis, and induce cell cycle arrest in malignant cells. METHODS The authors investigated the effects of four HDACIs on nine ovarian carcinoma cell lines in vitro and in vivo. Ovarian carcinoma cells were treated with a variety of HDACIs, and their effects on cell growth, the cell cycle, apoptosis, and related events were investigated. The ability of valproic acid (VPA) to inhibit the growth of ovarian tumors in immunodeficient mice was also assessed. RESULTS Clonogenic assays showed that all ovarian carcinoma cell lines were sensitive to the growth-inhibitory effects of the HDACIs. Cell cycle analysis indicated that their exposure to HDACIs decreased the proportion of cells in S phase and increased the proportion of cells in the G0/G1 and/or G2/M phases of the cell cycle. Terminal deoxynucleotidyltransferase-mediated uridine triphosphate end-labeling assays demonstrated that HDACIs induced apoptosis, which occurred in concert with alterations in the expression of genes related to apoptosis, cell growth, and malignant phenotype, including the activation of caspase-9 and caspase-3. Chromatin immunoprecipitation analysis revealed a notable increase in levels of acetylated histones associated with the p21 promoter after treatment with suberoylanilide bishydroxamine. In addition, in experiments involving nude mice, VPA significantly inhibited human ovarian tumor growth without toxic side effects. CONCLUSIONS The results of the current study suggest that HDACIs may be particularly effective in the treatment of ovarian tumors. Cancer 2004. © 2004 American Cancer Society. [source]


Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement

COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, Issue 3 2009
Julie A. Montagnac
ABSTRACT:, Cassava is a drought-tolerant, staple food crop grown in tropical and subtropical areas where many people are afflicted with undernutrition, making it a potentially valuable food source for developing countries. Cassava roots are a good source of energy while the leaves provide protein, vitamins, and minerals. However, cassava roots and leaves are deficient in sulfur-containing amino acids (methionine and cysteine) and some nutrients are not optimally distributed within the plant. Cassava also contains antinutrients that can have either positive or adverse effects on health depending upon the amount ingested. Although some of these compounds act as antioxidants and anticarcinogens, they can interfere with nutrient absorption and utilization and may have toxic side effects. Efforts to add nutritional value to cassava (biofortification) by increasing the contents of protein, minerals, starch, and ,-carotene are underway. The transfer of a 284 bp synthetic gene coding for a storage protein rich in essential amino acids and the crossbreeding of wild-type cassava varieties with Manihot dichotoma or Manihot oligantha have shown promising results regarding cassava protein content. Enhancing ADP glucose pyrophosphorylase activity in cassava roots or adding amylase to cassava gruels increases cassava energy density. Moreover, carotenoid-rich yellow and orange cassava may be a foodstuff for delivering provitamin A to vitamin A,depleted populations. Researchers are currently investigating the effects of cassava processing techniques on carotenoid stability and isomerization, as well as the vitamin A value of different varieties of cassava. Biofortified cassava could alleviate some aspects of food insecurity in developing countries if widely adopted. [source]