Home About us Contact | |||
Tongue Length (tongue + length)
Selected AbstractsThe effect of desalivation on the malignant transformation of the tongue epithelium and associated stromal myofibroblasts in a rat 4-nitroquinoline 1-oxide-induced carcinogenesis modelINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2010Marilena Vered Summary The aim of our study was to analyse desalivated rat tongue epithelium for histopathological changes, proliferating cell nuclear antigen (PCNA), and epithelium-associated stromal myofibroblasts [SMF; ,-smooth muscle actin (,SMA)] following 0.001% 4-nitroquinoline 1-oxide (4NQO) administration in drinking water. Results were compared with those of identically treated but salivated specimens. 4NQO was administered for 7, 14, 22 and 28 weeks. Tongue length was divided into anterior, middle and posterior ,thirds'. The histopathological changes per ,third' were scored as normal epithelium, hyperplasia, dysplasia, carcinoma- in-situ, and superficial and invasive carcinoma. The PCNA and ,SMA stains were assessed by a point-counting method. At all time points, the histopathological changes in the anterior and middle thirds were higher in the desalivated than in the salivated group (P < 0.05) but almost identical in the posterior third (P > 0.05). PCNA scores were significantly lower in the desalivated vs. the salivated group at almost all time points and tongue thirds (P < 0.05). SMF were usually scarce in both groups, but there was a significant surge in the posterior third at 28 weeks: the score in the desalivated group was only about one-half that of the salivated group (P < 0.05). The absence of saliva seems to promote malignant transformation of the tongue epithelium in the early stages. PCNA cannot be regarded as a marker of proliferation and probably contributes to this process by other mechanisms. Emergence of SMF seems to be highly dependent on growth factors from saliva in addition to factors from cancerous cells. [source] THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT,POLLINATOR MUTUALISMEVOLUTION, Issue 1 2008Bruce Anderson Although coevolution is widely accepted as a concept, its importance as a driving factor in biological diversification is still being debated. Because coevolution operates mainly at the population level, reciprocal coadaptations should result in trait covariation among populations of strongly interacting species. A long-tongued fly (Prosoeca ganglbaueri) and its primary floral food plant (Zaluzianskya microsiphon) were studied across both of their geographical ranges. The dimensions of the fly's proboscis and the flower's corolla tube length varied significantly among sites and were strongly correlated with each other. In addition, the match between tube length of flowers and tongue length of flies was found to affect plant fitness. The relationship between flower tube length and fly proboscis length remained significant in models that included various alternative environmental (altitude, longitude, latitude) and allometric (fly body size, flower diameter) predictor variables. We conclude that coevolution is a compelling explanation for the geographical covariation in flower depth and fly proboscis length. [source] Brief communication: Noninvasive measuring of operational tongue length in callitrichidsAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2009Eckhard W. Heymann Abstract Callitrichids use their tongue in various social, ecological, and hygienic contexts. Using a noninvasive measuring device, we obtained data on the operational tongue length (OTL) in seven species from the family Callitrichidae. OTL (defined as the maximum tongue extension into the device) varied significantly between species and the width of the device, but did not correlate with mandible length; it is smaller in relation to mandible length in Leontopithecus chrysomelas compared to species from the genera Saguinus and Callithrix. Current information does not allow concluding which of the various functions of the tongue is selecting for tongue length. Am J Phys Anthropol 2009. © 2009 Wiley-Liss, Inc. [source] Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010SANTIAGO R. RAMÍREZ The orchid bees constitute a clade of prominent insect pollinators distributed throughout the Neotropical region. Males of all species collect fragrances from natural sources, including flowers, decaying vegetation and fungi, and store them in specialized leg pockets to later expose during courtship display. In addition, orchid bees provide pollination services to a diverse array of Neotropical angiosperms when foraging for food and nesting materials. However, despite their ecological importance, little is known about the evolutionary history of orchid bees. Here, we present a comprehensive molecular phylogenetic analysis based on ,4.0 kb of DNA from four loci [cytochrome oxidase (CO1), elongation factor 1-, (EF1 -,), arginine kinase (ArgK) and RNA polymerase II (Pol-II)] across the entire tribe Euglossini, including all five genera, eight subgenera and 126 of the approximately 200 known species. We investigated lineage diversification using fossil-calibrated molecular clocks and the evolution of morphological traits using disparity-through-time plots. In addition, we inferred past biogeographical events by implementing model-based likelihood methods. Our dataset supports a new view on generic relationships and indicates that the cleptoparasitic genus Exaerete is sister to the remaining orchid bee genera. Our divergence time estimates indicate that extant orchid bee lineages shared a most recent common ancestor at 27,42 Mya. In addition, our analysis of morphology shows that tongue length and body size experienced rapid disparity bursts that coincide with the origin of diverse genera (Euglossa and Eufriesea). Finally, our analysis of historical biogeography indicates that early diversification episodes shared a history on both sides of Mesoamerica, where orchid bees dispersed across the Caribbean, and through a Panamanian connection, thus reinforcing the hypothesis that recent geological events (e.g. the formation of the isthmus of Panama) contributed to the diversification of the rich Neotropical biota. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 552,572. [source] |