Home About us Contact | |||
Toll-like Receptor Ligands (toll-like + receptor_ligand)
Selected AbstractsMicrobial Toll-like receptor ligands differentially regulate CXCL10/IP-10 expression in fibroblasts and mononuclear leukocytes in synergy with IFN-, and provide a mechanism for enhanced synovial chemokine levels in septic arthritisEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2003Paul Proost Abstract The CXC chemokine IFN-,-inducible protein-10 (IP-10/CXCL10) activates CXC chemokine receptor 3 (CXCR3) and attracts activated T cells and natural killer cells. Peripheral blood mononuclearcells (PBMC) produce low but significant amounts of IP-10/CXCL10 protein upon stimulation with double-stranded (ds) RNA, the Toll-like receptor 3 (TLR3) ligand. IFN-, is a superior IP-10/CXCL10inducer. The bacterial TLR4 and TLR2 ligands, LPS and peptidoglycan (PGN), inhibit IFN-,- or dsRNA-dependent IP-10/CXCL10 production in PBMC, whereas IL-8/CXCL8 production was enhanced. In fibroblasts a different picture emerges with IFN-, inducing moderate and dsRNA provoking strong IP-10/CXCL10 production. Furthermore, treatment of fibroblasts with IFN-, in combination with bacterial LPS or PGN results in a synergistic production of IP-10/CXCL10 and IL-8/CXCL8. The synergistic induction of IP-10/CXCL10 in fibroblasts is reflected by significantly enhanced IP-10/CXCL10 concentrations in synovial fluids of septic compared to osteoarthritis patients to reach on average higher levels than those of IL-8/CXCL8. These high amounts of IP-10/CXCL10 produced by connective tissue fibroblasts not only attract CXCR3 expressing activated Th1 cells and natural killer cells to sites of infection but may also antagonize the CCR3 dependent attraction of Th2 lymphocytes and exert CXCR3-independent, defensin-like antibacterial activity. [source] Molecular pathological approaches to human tumor immunologyPATHOLOGY INTERNATIONAL, Issue 4 2009Noriyuki Sato Research on human tumor immunology has greatly advanced in the past two decades. Many immunogenic tumor antigens have been identified, and some of these antigens entered in clinical trials. Consequently, it has been shown that these antigens can inhibit tumor growth in patients to some extent, indicating that they act as potent immunogenic therapeutic vaccines in cancer patients with malignancies originating from various tissues. These patients had antigen-specific cytotoxic T-lymphocyte (CTL) responses when assessed on tetramer, enzyme-linked immunospot (ELISPOT), T-cell clonotype and CTL induction efficiency. Thus, it has become clear that human tumor vaccines can evoke clinical and immunological anti-tumor responses in patients. The tumor regression effects of tumor vaccines, however, are generally low, and it is obvious that current vaccination protocols are generally too weak to provide substantial and satisfactory clinical benefits. This means that other drastic and more potent clinical and immunological protocols are required in cancer immunotherapy. To find such efficient protocols the basic immunological and biological properties of cancers must be investigated. In the present review the identification of human tumor antigens recognized on CTL and the clinical trials are introduced. Next, the most recent analysis of human cancer-initiating cell (cancer stem cell)-associated antigens is described. These antigens might be able to act as ,universal, general and fundamental' tumor antigens. Also present is the authors' recent study for increasing cross-presentation efficiency in dendritic cells and subsequent enhancement of human leukocyte antigen (HLA)-class I-restricted peptide antigenicity by using HSP90 and ORP150 molecular chaperones that act as endogenous Toll-like receptor ligands. In addition to the aforementioned manipulation of the positive loop of tumor immunity, it is necessary to regulate and intervene in the negative loop. In particular, the potential of the expression of HLA class I molecule regulation by epigenetic mechanisms will be discussed. Finally, the type of basic and clinical tumor immunology research highly required currently, and in the very near future, are described. [source] Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, function as inhibitors of cellular and molecular components involved in type I interferon productionARTHRITIS & RHEUMATISM, Issue 7 2010Hideki Amuro Objective Statins, which are used as cholesterol-lowering agents, have pleiotropic immunomodulatory properties. Although beneficial effects of statins have been reported in autoimmune diseases, the mechanisms of these immunomodulatory effects are still poorly understood. Type I interferons (IFNs) and plasmacytoid dendritic cells (PDCs) represent key molecular and cellular pathogenic components in autoimmune diseases such as systemic lupus erythematosus (SLE). Therefore, PDCs may be a specific target of statins in therapeutic strategies against SLE. This study was undertaken to investigate the immunomodulatory mechanisms of statins that target the IFN response in PDCs. Methods We isolated human blood PDCs by flow cytometry and examined the effects of simvastatin and pitavastatin on PDC activation, IFN, production, and intracellular signaling. Results Statins inhibited IFN, production profoundly and tumor necrosis factor , production modestly in human PDCs in response to Toll-like receptor ligands. The inhibitory effect on IFN, production was reversed by geranylgeranyl pyrophosphate and was mimicked by either geranylgeranyl transferase inhibitor or Rho kinase inhibitor, suggesting that statins exert their inhibitory actions through geranylgeranylated Rho inactivation. Statins inhibited the expression of phosphorylated p38 MAPK and Akt, and the inhibitory effect on the IFN response was through the prevention of nuclear translocation of IFN regulatory factor 7. In addition, statins had an inhibitory effect on both IFN, production by PDCs from SLE patients and SLE serum,induced IFN, production. Conclusion Our findings suggest a specific role of statins in controlling type I IFN production and a therapeutic potential in IFN-related autoimmune diseases such as SLE. [source] Toll-like receptor ligands as adjuvants in allergen-specific immunotherapyCLINICAL & EXPERIMENTAL ALLERGY, Issue 12 2005P. Johansen Summary Background Allergen-specific immunotherapy (SIT) leads to long-term amelioration of T-helper type 2 (Th2)-mediated allergic symptoms and is therefore recommended as a first line therapy for allergies. The major disadvantage of SIT is its low efficiency, requiring treatment over years. Objective In this study, we evaluated the potential of Toll-like receptor (TLR) ligands to facilitate Th1-type immune responses. Methods The immunogenicity and therapeutic potential of the major bee venom allergen phospholipase A2 (PLA2) combined with various TLR ligands were tested in mice and compared with immune responses induced by conventional aluminium-based preparations. Results Regarding total IgG against PLA2, TLR2/4-binding lipopolysaccharide and TLR3-binding polyriboinosinic polyribocytidylic (PolyI:C) were the superior adjuvants for prophylactic vaccination. However, TLR9-binding phosphorothioate-modified cytosine,guanosine-rich oligonucleotide (CpG), TLR-3-binding PolyI:C, and TLR2/6-binding peptidoglycan skewed the immune responses more towards IgG2a isotype and Th1 cytokines. Furthermore, in a therapeutic approach, CpG, PolyI:C and TLR7/8-binding 3M003 had immune modulating properties as they suppressed established IgE titres. Conclusion The potential of TLR ligands to adjuvate the immunogenicity of bee venom PLA2 and to skew the Th1,Th2 balance proved very heterogeneous. With respect to SIT, CpG, PolyI:C, and 3M003 were very promising. Hence, TLR ligands should be considered as adjuvants or immune modulators in SIT in human as to improve its efficiency regarding the Th1,Th2 balance of the immune response with a likely effect on therapy duration. [source] BAFF synthesis by rheumatoid synoviocytes is positively controlled by ,5,1 integrin stimulation and is negatively regulated by tumor necrosis factor , and toll-like receptor ligandsARTHRITIS & RHEUMATISM, Issue 10 2007Ghada Alsaleh Objective It was recently demonstrated that synoviocytes (FLS) from rheumatoid arthritis (RA) patients express BAFF transcripts that are up-regulated by tumor necrosis factor , (TNF,) and interferon-, (IFN,). Thus, BAFF increases in RA target cells might be related to activation of the receptors of innate immunity. The purpose of this study was to determine whether ligands of Toll-like receptor 2 (TLR-2), TLR-4, TLR-9, and ,5,1 integrin are able to induce BAFF synthesis by RA FLS. Methods Quantitative reverse transcription,polymerase chain reaction analyses and enzyme-linked immunosorbent assays were performed to evaluate BAFF messenger RNA induction and BAFF release from FLS after stimulation by ligands for TLR-2, TLR-4, TLR-9, ,5,1 integrin (bacterial lipopeptide [BLP] palmitoyl-3-cysteine-serine-lysine-4, lipopolysaccharide [LPS], CpG, and protein I/II, respectively), TNF,, and IFN,. Results In contrast to IFN,, neither TNF,, LPS, BLP, nor CpG induced the de novo synthesis and release of BAFF by FLS. Priming of cells with IFN, did not have a synergistic effect on BAFF synthesis by FLS stimulated with bacterial products known as pathogen-associated molecular patterns. Moreover, we found that IFN,-induced BAFF synthesis is inhibited by simultaneous stimulation with either TLR ligands or TNF,. We also showed that interplay between TLRs, TNF receptors, and IFN, signaling induces the expression of suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 and reduces IFN,-dependent STAT-1 phosphorylation, which might explain this inhibition. In contrast, we demonstrated that stimulation of ,5,1 integrin can induce BAFF synthesis and release per se and that stimulation of this pathway has no inhibitory effect on IFN,-induced BAFF synthesis. Conclusion Our findings indicate that BAFF secretion by resident cells in target organs of autoimmunity is tightly regulated by innate immunity, with positive and negative controls, depending on the receptors and the pathways triggered. [source] |