Tip Apex (tip + apex)

Distribution by Scientific Domains


Selected Abstracts


Fabrication of near-field optical apertures in aluminium by a highly selective corrosion process in the evanescent field

JOURNAL OF MICROSCOPY, Issue 3 2003
D. Haefliger
Summary A simple, one-step process to fabricate high-quality apertures for scanning near-field optical microscope probes based on aluminium-coated silicon nitride cantilevers is presented. A thin evanescent optical field at a glass,water interface was used to heat the aluminium at the tip apex due to light absorption. The heat induced a breakdown of the passivating oxide layer and local corrosion of the metal, which selectively exposed the front-most part of the probe tip from the aluminium. Apertures with a protruding silicon nitride tip up to 72 nm in height were fabricated. The height of the protrusion was controlled by the extent of the evanescent field, whereas the diameter depended on the geometry of the probe substrate. The corrosion process proved to be self-terminating, yielding highly reproducible tip heights. Near-field optical resolution in a transmission mode of 85 nm was demonstrated. [source]


Single-molecule near-field optical energy transfer microscopy with dielectric tips

JOURNAL OF MICROSCOPY, Issue 3 2003
W. Trabesinger
Summary The fluorescence lifetime and the fluorescence rate of single molecules are recorded as a function of the position of a Si3N4 atomic force microscopy tip with respect to the molecule. We observe a decrease of the excited state lifetime and the fluorescence rate when the tip apex is in close proximity to the molecule. These effects are attributed to the fact that the dielectric tip converts non-propagating near-fields to propagating fields within the dielectric tip effectively quenching the fluorescence. The spatial extension of the quenching area is of subwavelength dimensions. The results are discussed in terms of molecular fluorescence in a system of stratified media. The experiment provides surprising new insights into the interactions between a fluorescent molecule and a dielectric tip. The methodology holds promise for applications in ultra high-resolution near-field optical imaging at the level of single fluorophores. [source]


Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials

JOURNAL OF RAMAN SPECTROSCOPY, Issue 10 2009
Dr. Dai Zhang
Abstract A versatile and efficient tip-enhanced spectroscopic imaging technique based on a parabolic mirror (PM) assisted near-field optical microscope is demonstrated. The replacement of the conventional objective lens with a parabolic mirror allows the non-restricted investigation of sample materials regarding their opacity. In addition, an improved signal collection efficiency and effective excitation of the longitudinal plasmonic oscillation in the tip apex are obtained. The capabilities of PM-assisted tip-enhanced Raman (TER) and photoluminescence (PL) imaging in distinguishing the individual domains made of different chemical components in poly (3-hexythiophene)/[6, 6]-penyl-C61 butyric acid methyl ester (P3HT/PCBM) solar cell blend film and in the investigation of the plasmonic properties of geometrically well-defined Au cones are demonstrated. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Electrochemical Modulation of Remote Fluorescence Imaging at an Ordered Opto-electrochemical Nanoaperture Array

CHEMPHYSCHEM, Issue 8 2004
Arnaud Chovin
Abstract An array of nanometer-sized apertures capable of electrochemically modulating the fluorescence of a model analyte is presented. The device, which combines near-field optical methods and ultramicroelectrode properties in an array format, is based on an etched coherent optical fiber bundle. Indeed, the fabrication steps produced an ordered array where each optical nanoaperture is surrounded by a ring-shaped gold nanoelectrode. The chronoamperometric behavior of the array shows stable diffusion-limited quasi-steady-state response. The model analyte, tris(2,2,-bipyridine) ruthenium, emits fluorescence in the Ru(II) state, but not in the oxidized Ru(III) state. Fluorescence is excited by visible light exiting from each nanoaperture since light is confined to the tip apex by the gold coating. A fraction of the isotropically emitted luminescence is collected by the same nanoaperture, transmitted by the corresponding fiber core and eventually detected by a charge-coupled device (CCD) camera. The array format provides a fluorescence image resolved at the nanometric scale which covers a large micrometric area. Therefore the high-density array plays a bridging role between these two fundamental scales. We established that the opto-electrochemical nanoapertures are optically independent. Fluorescence of the sample collected by each nanoaperture is modulated by changing the potential of the nanoring electrodes. Reversible electrochemical switching of remote fluorescence imaging is performed through the opto-electrochemical nanoaperture array itself. Eventually this ordered structure of nanometer light sources which are electrochemically manipulated provides promising photonic or electro-optical devices for various future applications. For example, such an array has potential in the development of a combined SNOM-electrochemical nanoprobe array to image a real sample concomitantly at the nanometer and micrometer scale. [source]