Home About us Contact | |||
Time-of-flight Tandem Mass Spectrometry (time-of-flight + tandem_mass_spectrometry)
Kinds of Time-of-flight Tandem Mass Spectrometry Selected AbstractsHighly Chemo- and Regioselective Reduction of Aromatic Nitro Compounds Catalyzed by Recyclable Copper(II) as well as Cobalt(II) PhthalocyaninesADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2010Upendra Sharma Abstract Copper/cobalt phthalocyanines were established for the first time as catalysts for the very efficient chemo- and regioselective reduction of aromatic nitro compounds to generate the corresponding amines. The selective reduction of nitro compounds was observed in the presence of a large range of functional groups such as aldehyde, keto, acid, amide, ester, halogen, lactone, nitrile and heterocyclic functional groups. Furthermore, the present method was found to be highly regioselective towards the reduction of aromatic dinitro compounds in a short time with high yields. In most of the cases the conversion and selectivity were >99% as monitored by GC-MS. The reduction mechanism was elucidated by UV-vis and electrospray ionization quadrupole time-of-flight tandem mass spectrometry. [source] Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometryJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 2 2005Geert Baggerman Abstract Peptides are the largest class of signalling molecules found in animals. Nevertheless, in most proteomic studies peptides are overlooked since they literally fall through the mazes of the net. In analogy with proteomics technology, where all proteins expressed in a cell or tissue are analyzed, the peptidomic approach aims at the simultaneous visualization and identification of the whole peptidome of a cell or tissue, i.e. all expressed peptides with their post-translational modifications. In this paper we describe the analysis of the larval fruit fly central nervous system using two-dimensional capillary liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (LC/Q-TOF-MS/MS. Using the central nervous systems of only 50 larval Drosophila as starting material, we identified 38 peptides in a single analysis, 20 of which were not detected in a previous study that reported on the one-dimensional capillary LC/MS/MS analysis of the same tissue. Among the 38 sequenced peptides, some originate from precursors, such as the tachykinin and the IFamide precursor that were entirely missed in the first study. This clearly demonstrates that the two-dimensional capillary LC approach enhances the coverage of the peptidomic analysis. Copyright © 2005 John Wiley & Sons, Ltd. [source] Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean proteinJOURNAL OF PEPTIDE SCIENCE, Issue 8 2006Guan-Hong Li Abstract Mung bean protein isolates were hydrolyzed for 2 h by Alcalase. The generated hydrolysate showed angiotensin I-converting enzyme (ACE) inhibitory activity with the IC50 value of 0.64 mg protein/ml. Three kinds of novel ACE inhibitory peptides were isolated from the hydrolysate by Sephadex G-15 and reverse-phase high performance liquid chromatography (RP-HPLC). These peptides were identified by amino acid composition analysis and matrix assisted-laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), as Lys-Asp-Tyr-Arg-Leu, Val-Thr-Pro-Ala-Leu-Arg and Lys-Leu-Pro-Ala-Gly-Thr-Leu-Phe with the IC50 values of 26.5 µM, 82.4 µM and 13.4 µM, respectively. Copyright © 2006 European Peptide Society and John Wiley & Sons, Ltd. [source] Investigation on fragmentation pathways of rutaecarpine and its two derivatives using electrospray ionization ion-trap time-of-flight tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 18 2010Bin Wang First page of article [source] Dead time loss correction of mass errors occurring in high-throughput proteomics based on electrospray ionization time-of-flight tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 10 2010Yoko Ishino First page of article [source] Characterisation of oxazepam degradation products by high-performance liquid chromatography/electrospray ionisation mass spectrometry and electrospray ionisation quadrupole time-of-flight tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 5 2010Thomas J. P. Smyth Oxazepam has been subjected to controlled degradation at 100°C for 3,h in 0.5,M HCl and 0.5,M NaOH. Following neutralisation of the degradation mixture and removal of salts by solid-phase extraction (SPE), isocratic high-performance liquid chromatography/mass spectrometry (HPLC/MS) using water/methanol (25:75,v/v) as the mobile phase was carried out using a flow diverter to collect fractions prior to their characterisation by electrospray ionisation multi-stage mass spectrometry (ESI-MSn) and proposal of the corresponding fragmentation patterns. The elemental compositions of the degradation products and their MS fragments were evaluated using electrospray ionisation quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS) which was then used to support the proposed fragmentation patterns. Copyright © 2010 John Wiley & Sons, Ltd. [source] Liquid chromatography coupled to quadruple time-of-flight tandem mass spectrometry for microcystin analysis in freshwaters: method performances and characterisation of a novel variant of microcystin-RRRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 9 2009Pasquale Ferranti Cyanobacteria, also called blue-green algae, occur worldwide within water blooms in eutrophic lakes and drinking water reservoirs, producing several biotoxins (cyanotoxins). Among these, microcystins (MCs) are a group of cyclic heptapeptides showing potent hepatotoxicity and activity as tumour promoters. So far, at least 89 MCs from different cyanobacteria genera have been characterised. Herein, ion trap, matrix-assisted laser desorption/ionisation time-of-flight (MALDI-ToF) and quadruple time-of-flight (Q-ToF) mass spectrometry (MS)-based methods were tested and compared for analysing MCs in freshwaters. Method performances in terms of limit of detection, limit of quantification, mean recoveries, repeatability, and specificity were evaluated. In particular, a liquid chromatography/electrospray ionisation (LC/ESI)-Q-ToF-MS/MS method was firstly described to analyse MCs in freshwaters; this technique is highly selective and sensitive, and allowed us to characterise the molecular structure of an unknown compound. Indeed, the full structural characterisation of a novel microcystin variant from a bloom of Planktothrixrubescens in the Lake Averno, near Naples, was attained by the study of the fragmentation pattern. The new cyanotoxin was identified as the 9-acetyl-Adda variant of microcystin-RR. Copyright © 2009 John Wiley & Sons, Ltd. [source] Characterization of different poly(2-ethyl-2-oxazoline)s via matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 6 2009Anja Baumgaertel Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) coupled with CID (collision-induced dissociation) has been used for the detailed characterization of two poly(2-ethyl-2-oxazoline)s as part of a continuing study of synthetic polymers by MALDI-TOF MS/MS. These experiments provided information about the variety of fragmentation pathways for poly(oxazoline)s. It was possible to show that, in addition to the eliminations of small molecules, like ethene and hydrogen, the McLafferty rearrangement is also a possible fragmentation route. A library of fragmentation pathways for synthetic polymers was also constructed and such a library should enable the fast and automated data analysis of polymers in the future. Copyright © 2009 John Wiley & Sons, Ltd. [source] Elucidation of the molecular structure of lipid A isolated from both a rough mutant and a wild strain of Aeromonas salmonicida lipopolysaccharides using electrospray ionization quadrupole time-of-flight tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2005Anas El-Aneed The chemical structure of lipid A, isolated by mild acid hydrolysis from a rough mutant and a wild strain of Aeromonas salmonicida lipopolysaccharide, was investigated using electrospray ionization quadrupole time-of-flight (QqToF) hybrid tandem mass spectrometry and showed a great degree of microheterogeneity. The chemical structure of the main constituent of this heterogeneous mixture was identified as a , -D-(1,,,6) linked D-glucosamine disaccharide substituted by two phosphate groups, one being bound to the non-reducing end at position O-4, and the other to the position O-1 of the reducing end of the D-glucosamine disaccharide. The location of the fatty acids linked to the disaccharide backbone was established by identifying diagnostic ions in the conventional QqToF-MS scan. Low-energy collision tandem mass spectrometry analysis of the selected precursor diagnostic ions confirmed, unambiguously, their proposed molecular structures. We have established that myristyloxylauric (C14:0(3- O(12:0))) acid residues were both N-2, and O-3, linked to the non-reducing end of the D-GlcN residue, and that two 3-hydroxymyristic (C14:0(3-OH)) acid chains acylated the remaining positions of the reducing end. The MS and MS/MS data obtained allowed us to determine the complex molecular structure of lipid A. The QqToF-MS/MS instrument has shown excellent superiority over a conventional quadrupole-hexapole-quadrupole tandem instrument which failed to fragment the selected precursor ion. Copyright © 2005 John Wiley & Sons, Ltd. [source] Identification of monovinyl tripropionic acid porphyrins and metabolites from faeces of patients with hereditary coproporphyria by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2004Malcolm Danton The original article to which this Erratum refers was published in Rapid Commun. Mass Spectrom. 2004; 18: 2309,2316 [source] Quantification of clenbuterol in equine plasma, urine and tissue by liquid chromatography coupled on-line with quadrupole time-of-flight mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 17 2002Fuyu Guan Clenbuterol (CBL) is a potent ,2 -adrenoceptor agonist used for the management of respiratory disorders in the horse. The detection and quantification of CBL can pose a problem due to its potency, the relatively low dose administered to the horse, its slow clearance and low plasma concentrations. Thus, a sensitive method for the quantification and confirmation of CBL in racehorses is required to study its distribution and elimination. A sensitive and fast method was developed for quantification and confirmation of the presence of CBL in equine plasma, urine and tissue samples. The method involved liquid-liquid extraction (LLE), separation by liquid chromatography (LC) on a short cyano column, and pseudo multiple reaction monitoring (pseudo-MRM) by electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS). At very low concentrations (picograms of CBL/mL), LLE produced better extraction efficiency and calibration curves than solid-phase extraction (SPE). The operating parameters for electrospray QTOF and yield of the product ion in MRM were optimized to enhance sensitivity for the detection and quantification of CBL. The quantification range of the method was 0.013,10,ng of CBL/mL plasma, 0.05,20,ng/0.1,mL of urine, and 0.025,10,ng/g tissue. The detection limit of the method was 13,pg/mL of plasma, 50,pg/0.1,mL of urine, and 25,pg/g of tissue. The method was successfully applied to the analysis of CBL in plasma, urine and various tissue samples, and in pharmacokinetic (PK) studies of CBL in the horse. CBL was quantified for 96,h in plasma and 288,h in urine post-administration of CLB (1.6,µg/kg, 2,×,daily,×,7 days). This method is useful for the detection and quantification of very low concentrations of CBL in urine, plasma and tissue samples. Copyright © 2002 John Wiley & Sons, Ltd. [source] Identification of N -linked oligosaccharide labeled with 1-pyrenesulfonyl chloride by quadrupole time-of-flight tandem mass spectrometry after separation by micro- and nanoflow liquid chromatographyBIOMEDICAL CHROMATOGRAPHY, Issue 9 2009Jun Zhe Min Abstract The development of a qualitative determination method for the N -linked oligosaccharides in glycoproteins was attempted by the combination of micro- or nanoflow LC with Q-TOF-MS/MS. The asparaginyl-oligosaccharides in glycoproteins, liberated from the treatment of Pronase E, were separated, purified and labeled with 1-pyrenesulfonyl chloride (PSC). The resulting derivatives were separated by the microflow LC system utilizing a 0.5 mm diameter microcolumn or nanoflow LC system utilizing a 75 µm diameter chip column. The eluted N -linked oligosaccharide derivatives were then introduced into the Q-TOF-MS instrument and sensitively detected in the ESI+ mode. Several factors (i.e. fragmentor, skimmer, Vcap voltages and collision energy) affecting the sensitivity of Q-TOF-MS/MS detection were optimized in both the micro- and nanoflow LC systems. Various fragment ions based on the carbohydrate units appeared on the MS/MS spectra. Among the peaks, m/z 600.16 corresponding to PSC-labeled Asp-HexNAc is the most important one to identify the asparaginyl-oligosaccharide. The N -linked oligosaccharides in the ovalbumin were easily identified by the selected-ion chromatogram at m/z 600.16 by the MS/MS detection. Therefore, the identification of N -linked oligosaccharides in glycoproteins seems to be possible by the proposed micro- and nanoflow LC separations followed by the Q-TOF-MS/MS detection. Copyright © 2009 John Wiley & Sons, Ltd. [source] |