Time-dependent Increase (time-dependent + increase)

Distribution by Scientific Domains


Selected Abstracts


Kinetic analysis of hyaluronidase activity using a bioactive MRI contrast agent

CONTRAST MEDIA & MOLECULAR IMAGING, Issue 3 2006
Liora Shiftan
Abstract One of the attractions of molecular imaging using ,smart' bioactive contrast agents is the ability to provide non-invasive data on the spatial and temporal changes in the distribution and expression patterns of specific enzymes. The tools developed for that aim could potentially also be developed for functional imaging of enzyme activity itself, through quantitative analysis of the rapid dynamics of enzymatic conversion of these contrast agents. High molecular weight hyaluronan, the natural substrate of hyaluronidase, is a major antiangiogenic constituent of the extracellular matrix. Degradation by hyaluronidase yields low molecular weight fragments, which are proangiogenic. A novel contrast material, HA-GdDTPA-beads, was designed to provide a substrate analog of hyaluronidase in which relaxivity changes are induced by enzymatic degradation. We show here a first-order kinetic analysis of the time-dependent increase in R2 as a result of hyaluronidase activity. The changes in R2 and the measured relaxivity of intact HA-GdDTPA-beads (r2B) and HA-GdDTPA fragments (r2D) were utilized for derivation of the temporal drop in concentration of GdDTPA in HA-GdDTPA-beads as the consequence of the release of HA-GdDTPA fragments. The rate of dissociation of HA-GdDTPA from the beads showed typical bell-shaped temperature dependence between 7 and 36 °C with peak activity at 25 °C. The tools developed here for quantitative dynamic analysis of hyaluronidase activity by MRI would allow the use of activation of HA-GdDTPA-beads for the determination of the role of hyaluronidase in altering the angiogenic microenvironment of tumor micro metastases. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Increased osteopontin expression following intranigral lipopolysaccharide injection in the rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2005
Joanna Iczkiewicz
Abstract Nigral cell death in Parkinson's disease is characterized by glial cell activation leading to inflammatory changes. Osteopontin (OPN) is a glycosylated phosphoprotein that is induced by inflammatory mediators and which we have previously shown to be present in the substantia nigra. However, the role of OPN in the nigral inflammation is not known. We now report on the effects of lipopolysaccharide (LPS)-induced glial cell activation in the substantia nigra of rats on OPN expression. LPS administration induced dopaminergic cell death as shown by reduced nigral tyrosine hydroxylase immunoreactivity. There was a corresponding time-dependent increase in both OPN mRNA, which was maximal at 48 h, and protein levels, which peaked at 72 h before returning to control levels by 120 h. This increase was accompanied by marked reactive gliosis as shown by increased OX-42, glial fibrillary acidic protein (GFAP) and ED1 immunoreactivity. OX-42-positive cells increased in a time-dependent manner, peaking at 72 h before returning to control levels at 120 h. Similarly, ED1-positive cells were present in their greatest numbers at 24 h but then gradually declined. These changes mirrored the alterations occurring in OPN protein and OPN mRNA, respectively. In contrast, GFAP-positive cells only started to increase in number at 120 h. Colocalization studies showed that OPN was present in both ED1- and OX-42-positive cells but not in GFAP-positive cells. These data confirm that intranigral injection of LPS induces a rapid and marked gliosis that accompanies the loss of tyrosine hydroxylase-positive neurones and suggest that, after glial cell activation, enhanced expression of OPN occurs linked to increased numbers of microglia and/or macrophages. This suggests that OPN may be functionally important in the control of inflammatory changes. [source]


Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2001
Carlos Cepeda
Abstract Infrared videomicroscopy and differential interference contrast optics were used to identify medium- and large-sized neurons in striatal slices from young rats. Whole-cell patch-clamp recordings were obtained to compare membrane currents evoked by application of N -methyl- d -aspartate (NMDA) and kainate. Inward currents and current densities induced by NMDA were significantly smaller in large- than in medium-sized striatal neurons. The negative slope conductance for NMDA currents was greater in medium- than in large-sized neurons and more depolarization was required to remove the Mg2+ blockade. In contrast, currents induced by kainate were significantly greater in large-sized neurons whilst current densities were approximately equal in both cell types. Spontaneous excitatory postsynaptic currents occurred frequently in medium-sized neurons but were relatively infrequent in large-sized neurons. Excitatory postsynaptic currents evoked by electrical stimulation were smaller in large- than in medium-sized neurons. A final set of experiments assessed a functional consequence of the differential sensitivity of medium- and large-sized neurons to NMDA. Cell swelling was used to examine changes in somatic area in both neuronal types after prolonged application of NMDA or kainate. NMDA produced a time-dependent increase in somatic area in medium-sized neurons whilst it produced only minimal changes in large interneurons. In contrast, application of kainate produced significant swelling in both medium- and large-sized cells. We hypothesize that reduced sensitivity to NMDA may be due to variations in receptor subunit composition and/or the relative density of receptors in the two cell types. These findings help define the conditions that put neurons at risk for excitotoxic damage in neurological disorders. [source]


Antipsoriatic drug anthralin induces EGF receptor phosphorylation in keratinocytes: requirement for H2O2 generation

EXPERIMENTAL DERMATOLOGY, Issue 2 2004
Dominik Peus
Abstract: Even though anthralin is a well-established topical therapeutic agent for psoriasis, little is known about its effects and biochemical mechanisms of signal transduction. In contrast to a previous report, we found that anthralin induced time- and concentration-dependent phosphorylation of epidermal growth factor receptor in primary human keratinocytes. Four lines of evidence show that this process is mediated by reactive oxygen species. First, we found that anthralin induces time-dependent generation of H2O2. Second, there is a correlation between a time-dependent increase in anthralin-induced epidermal growth factor receptor phosphorylation and H2O2 generation. Third, the structurally different antioxidants n -propyl gallate and N -acetylcysteine inhibited epidermal growth factor receptor phosphorylation induced by anthralin. Fourth, overexpression of catalase inhibited this process. The epidermal growth factor receptor-specific tyrosine kinase inhibitor PD153035 abrogated anthralin-induced epidermal growth factor receptor phosphorylation and activation of extracellular-regulated kinase 1/2. These findings establish the following sequence of events: (1) H2O2 generation, (2) epidermal growth factor receptor phosphorylation, and (3) extracellular-regulated kinase activation. Our data identify anthralin-induced reactive oxygen species and, more specifically, H2O2 as an important upstream mediator required for ligand-independent epidermal growth factor receptor phosphorylation and downstream signaling. [source]


17,-estradiol induces aromatase activity in intact human anagen hair follicles ex vivo

EXPERIMENTAL DERMATOLOGY, Issue 4 2002
R. Hoffmann
Abstract: For topical treatment of androgenetic alopecia (AGA) in women, solutions containing either estradiol benzoate, estradiol valerate, 17,- or 17,-estradiol are commercially available in Europe and some studies show an increased anagen and decreased telogen rate after treatment as compared with placebo. At present it is not precisely known how estrogens mediate their beneficial effect on AGA-affected hair follicles. We have shown recently that 17,-estradiol is able to diminish the amount of dihydrotestosterone (DHT) formed by human hair follicles after incubation with testosterone, while increasing the concentration of weaker steroids such as estrogens. Because aromatase is involved in the conversion of testosterone to estrogens and because there is some clinical evidence that aromatase activity may be involved in the pathogenesis of AGA, we addressed the question whether aromatase is expressed in human hair follicles and whether 17,-estradiol is able to modify the aromatase activity. Herewith we were able to demonstrate that intact, microdissected hair follicles from female donors express considerably more aromatase activity than hair follicles from male donors. Using immunohistochemistry, we detected the aromatase mainly in the epithelial parts of the hair follicle and not in the dermal papilla. Furthermore, we show that in comparison to the controls, we noticed in 17,-estradiol-incubated (1 nM) female hair follicles a concentration- and time-dependent increase of aromatase activity (at 24 h: 1 nM = +18%, 100 nM = +25%, 1 µM = +57%; 24 h: 1 nM = +18%, 48 h: 1 nM = +25%). In conclusion, our ex vivo experiments suggest that under the influence of 17,-estradiol an increased conversion of testosterone to 17,-estradiol and androstendione to estrone takes place, which might explain the beneficial effects of estrogen treatment of AGA. [source]


Progestin upregulates G-protein-coupled receptor 30 in breast cancer cells

FEBS JOURNAL, Issue 10 2002
Tytti M. Ahola
A differential display method was used to study genes the expression of which is altered during growth inhibition induced by medroxyprogesterone acetate (MPA). A transcript of G-protein-coupled receptor 30 (GPR30) was upregulated by MPA in estrogen-treated MCF-7 breast cancer cells. Northern-blot analysis showed a progestin-specific primary target gene, which was enhanced by progesterone and different progestins, but not by dihydrotestosterone or dexamethasone, and which was abrogated by antiprogestin RU486. The dose-dependent and time-dependent increase in GPR30 mRNA expression correlated with MPA-induced growth inhibition in MCF-7 cells. Additionally, GPR30 upregulation by progestin correlated with growth inhibition when a comparison was made between different breast cancer cell lines. The ERK1/ERK2 pathway is capable of inducing progesterone receptor-dependent and ligand-dependent transcription. Thus we sought to establish whether different MAPK pathway inhibitors affect progestin-induced GPR30 mRNA regulation. The regulation of GPR30 was independent of ERK pathway activation, but the p38 pathway inhibitor induced GPR30 expression, which suggested a potential gene regulation pathway. These data demonstrate a new progestin target gene, the expression of which correlates with growth inhibition. [source]


Disparity between prostate tumor interior versus peripheral vasculature in response to verteporfin-mediated vascular-targeting therapy

INTERNATIONAL JOURNAL OF CANCER, Issue 3 2008
Bin Chen
Abstract Photodynamic therapy (PDT) is a light-based cancer treatment modality. Here we employed both in vivo and ex vivo fluorescence imaging to visualize vascular response and tumor cell survival after verteporfin-mediated PDT designed to target tumor vasculature. EGFP-MatLyLu prostate tumor cells, transduced with EGFP using lentivirus vectors, were implanted in athymic nude mice. Immediately after PDT with different doses of verteporfin, tumor-bearing animals were injected with a fluorochrome-labeled albumin. The extravasation of fluorescent albumin along with tumor EGFP fluorescence was monitored noninvasively with a whole-body fluorescence imaging system. Ex vivo fluorescence microscopy was performed on frozen sections of tumor tissues taken at different times after treatment. Both in vivo and ex vivo imaging demonstrated that vascular-targeting PDT with verteporfin significantly increased the extravasation of fluorochrome-labeled albumin in the tumor tissue, especially in the tumor periphery. Although PDT induced substantial vascular shutdown in interior blood vessels, some peripheral tumor vessels were able to maintain perfusion function up to 24 hr after treatment. As a result, viable tumor cells were typically detected in the tumor periphery in spite of extensive tumor cell death. Our results demonstrate that vascular-targeting PDT with verteporfin causes a dose- and time-dependent increase in vascular permeability and decrease in blood perfusion. However, compared to the interior blood vessels, peripheral tumor blood vessels were found less sensitive to PDT-induced vascular shutdown, which was associated with subsequent tumor recurrence in the tumor periphery. © 2008 Wiley-Liss, Inc. [source]


Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2010
Kent Søe
Abstract Osteoclasts are known to exert their resorptive activity through a so-called resorption cycle consisting of alternating resorption and migration episodes and resulting typically in the formation of increasing numbers of discrete round excavations on bone slices. This study shows that glucocorticoids deeply modify this resorptive behavior. First, glucocorticoids gradually induce excavations with a trenchlike morphology while reducing the time-dependent increase in excavation numbers. This indicates that glucocorticoids make osteoclasts elongate the excavations they initiated rather than migrating to a new resorption site, as in control conditions. Second, the round excavations in control conditions contain undegraded demineralized collagen as repeatedly reported earlier, whereas the excavations with a trenchlike morphology generated under glucocorticoid exposure appear devoid of leftovers of demineralized collagen. This indicates that collagenolysis proceeds generally at a lower rate than demineralization under control conditions, whereas collagenolysis rates are increased up to the level of demineralization rates in the presence of glucocorticoids. Taking these observations together leads to a model where glucocorticoid-induced increased collagenolysis allows continued contact of osteoclasts with mineral, thereby maintaining resorption uninterrupted by migration episodes and generating resorption trenches. In contrast, accumulation of demineralized collagen, as prevails in controls, acts as a negative-feedback loop, switching resorptive activity off and promoting migration to a new resorption site, thereby generating an additional resorption pit. We conclude that glucocorticoids change the osteoclastic resorption mode from intermittent to continuous and speculate that this change may contribute to the early bone fragilization of glucocorticoid-treated patients. © 2010 American Society for Bone and Mineral Research. [source]


Mutations in the Insulin-Like Factor 3 Receptor Are Associated With Osteoporosis,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2008
Alberto Ferlin
Abstract Introduction: Insulin-like factor 3 (INSL3) is produced primarily by testicular Leydig cells. It acts by binding to its specific G protein,coupled receptor RXFP2 (relaxin family peptide 2) and is involved in testicular descent during fetal development. The physiological role of INSL3 in adults is not known, although substantial INSL3 circulating levels are present. The aim of this study was to verify whether reduced INSL3 activity could cause or contribute to some signs of hypogonadism, such as reduced BMD, currently attributed to testosterone deficiency. Materials and Methods: Extensive clinical, biochemical, and hormonal study, including bone densitometry by DXA, was performed on 25 young men (age, 27,41 yr) with the well-characterized T222P mutation in the RXFP2 gene. Expression analysis of INSL3 and RXFP2 on human bone biopsy and human and mouse osteoblast cell cultures was performed by RT-PCR, quantitative RT-PCR, and immunohistochemistry. Real-time cAMP imaging analysis and proliferation assay under the stimulus of INSL3 was performed on these cells. Lumbar spine and femoral bone of Rxfp2- deficient mice were studied by static and dynamic histomorphometry and ,CT, respectively. Results: Sixteen of 25 (64%) young men with RXFP2 mutations had significantly reduced BMD. No other apparent cause of osteoporosis was evident in these subjects, whose testosterone levels and gonadal function were normal. Expression analyses showed the presence of RXFP2 in human and mouse osteoblasts. Stimulation of these cells with INSL3 produced a dose- and time-dependent increase in cAMP and cell proliferation, confirming the functionality of the RXFP2/INSL3 receptor,ligand complex. Consistent with the human phenotype, bone histomorphometric and ,CT analyses of Rxfp2,/, mice showed decreased bone mass, mineralizing surface, bone formation, and osteoclast surface compared with wildtype littermates. Conclusions: This study suggests for the first time a role for INSL3/RXFP2 signaling in bone metabolism and links RXFP2 gene mutations with human osteoporosis. [source]


Activation of caspase-3 alone is insufficient for apoptotic morphological changes in human neuroblastoma cells

JOURNAL OF NEUROCHEMISTRY, Issue 6 2002
Margaret M. Racke
Abstract Activated caspase-3 is considered an important enzyme in the cell death pathway. To study the specific role of caspase-3 activation in neuronal cells, we generated a stable tetracycline-regulated SK-N-MC neuroblastoma cell line, which expressed a highly efficient self-activating chimeric,caspase-3, consisting of the caspase-1 prodomain fused to the caspase-3 catalytic domain. Under expression-inducing conditions, we observed a time-dependent increase of processed caspase-3 by immunostaining for the active form of the enzyme, intracellular caspase-3 enzyme activity, as well as poly(ADP-ribose) polymerase (PARP) cleavage. Induced expression of the caspase fusion protein showed predominantly caspase-3 activity without any apoptotic morphological changes. In contrast, staurosporine treatment of the same cells resulted in activation of multiple caspases and profound apoptotic morphology. Our work provides evidence that auto-activation of caspase-3 can be efficiently achieved with a longer prodomain and that neuronal cell apoptosis may require another caspase or activation of multiple caspase enzymes. [source]


Embryonic stem cells produce neurotrophins in response to cerebral tissue extract: Cell line-dependent differences

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2007
Kristine Bentz
Abstract In the present study, we compare the capacity of two different embryonic stem (ES) cell lines to secrete neurotrophins in response to cerebral tissue extract derived from healthy or injured rat brains. The intrinsic capacity of the embryonic cell lines BAC7 (feeder cell-dependent cultivation) to release brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) exceeded the release of these factors by CGR8 cells (feeder cell-free growth) by factors of 10 and 4, respectively. Nerve growth factor (NGF) was secreted only by BAC7 cells. Conditioning of cell lines with cerebral tissue extract derived from healthy or fluid percussion-injured rat brains resulted in a significant time-dependent increase in BDNF release in both cell lines. The increase in BDNF release by BAC7 cells was more pronounced when cells were incubated with brain extract derived from injured brain. However, differences in neurotrophin release associated with the origin of brain extract were at no time statistically significant. Neutrophin-3 and NGF release was inhibited when cell lines were exposed to cerebral tissue extract. The magnitude of the response to cerebral tissue extract was dependent on the intrinsic capacity of the cell lines to release neurotrophins. Our results clearly demonstrate significant variations in the intrinsic capability of different stem cell lines to produce neurotrophic factors. Furthermore, a significant modulation of neurotrophic factor release was observed following conditioning of cell lines with tissue extract derived from rat brains. A significant modulation of neurotrophin release dependent on the source of cerebral tissue extract used was not observed. © 2007 Wiley-Liss, Inc. [source]


Loss of lipopolysaccharide-induced nitric oxide production and inducible nitric oxide synthase expression in scrapie-infected N2a cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2003
Heléne Lindegren
Abstract In scrapie-infected cells, the conversion of the cellular prion protein to the pathogenic prion has been shown to occur in lipid rafts, which are suggested to function as signal transduction platforms. Neuronal cells may respond to bacterial lipopolysaccharide (LPS) treatment with a sustained and elevated nitric oxide (NO) release. Because prions and the major LPS receptor CD14 are colocalized in lipid rafts, the LPS-induced NO production in scrapie-infected neuroblastoma cells was studied. This study shows that LPS induces a dose- and time-dependent increase in NO release in the murine neuroblastoma cell line N2a, with a 50-fold increase in NO production at 1 ,g/ml LPS after 96 hr, as measured by nitrite in the medium. This massive NO release was not caused by activation of the neuronal NO synthase (nNOS), but by increased expression of the inducible NOS (iNOS) mRNA and protein. However, in scrapie-infected N2a cells (ScN2a), the LPS-induced NO production was completely abolished. The absence of LPS-induced NO production in ScN2a was due not to abolished enzymatic activity of iNOS but to a complete inhibition of the LPS-induced iNOS gene expression as measured by Western blot and RT-PCR. These results indicate that scrapie infection inhibits the LPS-mediated signal transduction upstream of the transcriptional step in the signaling cascade and may reflect the important molecular and cellular changes induced by scrapie infection. © 2002 Wiley-Liss, Inc. [source]


Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: Growth factor production

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2002
Xiaoguang Chen
Abstract Treatment of traumatic brain injury (TBI) with bone marrow stromal cells (MSCs) improves functional outcome in the rat. However, the specific mechanisms by which introduced MSCs provide benefit remain to be elucidated. Currently, the ability of therapeutically transplanted MSCs to replace injured parenchymal CNS tissue appears limited at best. Tissue replacement, however, is not the only possible compensatory avenue in cell transplantation therapy. Various growth factors have been shown to mediate the repair and replacement of damaged tissue, so trophic support provided by transplanted MSCs may play a role in the treatment of damaged tissue. We therefore investigated the temporal profile of various growth factors, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and hepatocyte growth factor (HGF), within cultures of human MSCs (hMSCs) conditioned with cerebral tissue extract from TBI. hMSCs were cultured with TBI extracts of rat brain in vitro and quantitative sandwich enzyme-linked immunosorbent assays (ELISAs) were performed. TBI-conditioned hMSCs cultures demonstrated a time-dependent increase of BDNF, NGF, VEGF, and HGF, indicating a responsive production of these growth factors by the hMSCs. The ELISA data suggest that transplanted hMSCs may provide therapeutic benefit via a responsive secretion of an array of growth factors that can foster neuroprotection and angiogenesis. © 2002 Wiley-Liss, Inc. [source]


Polymethylmethacrylate particles impair osteoprogenitor viability and expression of osteogenic transcription factors Runx2, osterix, and Dlx5

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2010
Richard Chiu
Abstract Polymethylmethacrylate (PMMA) particles have been shown to inhibit the differentiation of osteoprogenitor cells, but the mechanism of this inhibitory effect has not been investigated. We hypothesize that the inhibitory effects of PMMA particles involve impairment of osteoprogenitor viability and direct inhibition of transcription factors that regulate osteogenesis. We challenged MC3T3-E1 osteoprogenitors with PMMA particles and examined the effects of these materials on osteoprogenitor viability and expression of transcription factors Runx2, osterix, Dlx5, and Msx2. MC3T3-E1 cells treated with PMMA particles over a 72-h period showed a significant reduction in cell viability and proliferation as indicated by a dose- and time-dependent increase in supernatant levels of lactate dehydrogenase, an intracellular enzyme released from dead cells, a dose-dependent decrease in cell number and BrdU uptake, and the presence of large numbers of positively labeled Annexin V-stained cells. The absence of apoptotic cells on TUNEL assay indicated that cell death occurred by necrosis, not apoptosis. MC3T3-E1 cells challenged with PMMA particles during the first 6 days of differentiation in osteogenic medium showed a significant dose-dependent decrease in the RNA expression of Runx2, osterix, and Dlx5 on all days of measurement, while the RNA expression of Msx2, an antagonist of Dlx5-induced osteogenesis, remained relatively unaffected. These results indicate that PMMA particles impair osteoprogenitor viability and inhibit the expression of transcription factors that promote osteoprogenitor differentiation. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:571,577, 2010 [source]


Despite large-scale T cell activation, only a minor subset of T cells responding in vitro to Actinobacillus actinomycetemcomitans differentiate into effector T cells

JOURNAL OF PERIODONTAL RESEARCH, Issue 3 2000
Homayoun H. Zadeh
Recent studies in our laboratory have demonstrated that Actinobacillus actinomycetemcomitans has a potent T cell stimulatory effect, activating more than half of all T cells. However, since the fate of these activated T cells was not known, the present study sought to determine whether all of these T cells differentiate into effector cells. To that end, the intracellular expression of T cell cytokines (IL-2, IFN-,, IL-4 and IL-10) in response to A. actinomycetemcomitans was determined by flow cytometry. Results demonstrated a time-dependent increase in the expression of the cytokines, most reaching peak levels at 24,48 h. At 48 h, the proportion of T cells expressing each of the cytokines were as follows: IL-2 (1.7%±0.3), IFN-,(1.8%±0.5), IL-4 (1.0%±0.2) and IL-10 (1.5%±0.5). These data indicated that only 2,5% of all T cells stimulated with A. actinomycetemcomitans expressed any T cell cytokines. The finding of large-scale T cell activation in the absence of cytokine expression suggests that the activation of T cells in response to A. actinomycetemcomitans is incomplete. To investigate this phenomenon, peripheral blood mononuclear cells (PBMC) were cultured with A. actinomycetemcomitans for 24 h followed by sorting of the activated (CD69+) cells by immunomagnetic separation and restimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. Results demonstrated that nearly 90% of the T cells were unresponsive to further restimulation. A possible explanation for this unresponsiveness is the induction of clonal anergy among the responding T cells. To determine possible preferential effects of the stimulation on specific cytokines, the expression of each cytokine among T cells responding to A. actinomycetemcomitans was compared to the maximum levels achieved by PMA+ionomycin stimulation. Results showed that number of IL-2+ and IFN-,+ T cells observed in response to A. actinomycetemcomitans were between 2% and 7% of those seen in response to PMA+ionomycin. Conversely, the proportions of T cells expressing IL-4 or IL-10 were between 35% and 90% of those following stimulation with PMA+ionomycin. Hence, A. actinomycetemcomitans appears to more preferentially induce T cells [source]


Angiostatin K1-3 induces E-selectin via AP1 and Ets1: a mediator for anti-angiogenic action of K1-3

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 11 2008
Y.-H. CHEN
Summary.,Background:,Angiostatin, a circulating angiogenic inhibitor, is an internal fragment of plasminogen and consists of several isoforms, K1-3 included. We previously showed that K1-3 was the most potent angiostatin to induce E-selectin mRNA expression. The purpose of this study was to identify the mechanism responsible for K1-3-induced E-selectin expression and investigate the role of E-selectin in the anti-angiogenic action of K1-3. Methods and results:,Quantitative real time RT-PCR and Western blotting analyses confirmed a time-dependent increase of E-selectin mRNA and protein induced by K1-3. Subcellular fractionation and immunofluorescence microscopy showed the co-localization of K1-3-induced E-selectin with caveolin 1 (Cav1) in lipid rafts in which E-selectin may behave as a signaling receptor. Promoter-driven reporter assays and site-directed mutagenesis showed that K1-3 induced E-selectin expression via promoter activation and AP1 and Ets-1 binding sites in the proximal E-selectin promoter were required for E-selectin induction. The in vivo binding of both protein complexes to the proximal promoter was confirmed by chromatin immunoprecipitation (ChIP). Although K1-3 induced the activation of ERK1/2 and JNK, only repression of JNK activation attenuated the induction of E-selectin by K1-3. A modulatory role of E-selectin in the anti-angiogenic action of K1-3 was manifested by both overexpression and knockdown of E-selectin followed by cell proliferation assay. Conclusions:,We show that K1-3 induced E-selectin expression via AP1 and Ets-1 binding to the proximal E-selectin promoter (,356/+1), which was positively mediated by JNK activation. Our findings also demonstrate E-selectin as a novel target for the anti-angiogenic therapy. [source]


Platelet nitric oxide synthase is activated by tyrosine dephosphorylation: possible role for SHP-1 phosphatase

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 11 2006
B. PATEL
Summary.,Background:,Endothelial nitric oxide synthase (eNOS) activity in endothelial cells is regulated by post-translational phosphorylation of critical serine, threonine and tyrosine residues in response to a variety of stimuli. However, the post-translational regulation of eNOS in platelets is poorly defined. Objectives:,We investigated the role of tyrosine phosphorylation in the regulation of platelet eNOS activity. Methods:,Tyrosine phosphorylation of eNOS and interaction with the tyrosine phosphatase SHP-1 were investigated by coimmunoprecipitation and immunoblotting. An in vitro immunoassay was used to determine eNOS activity together with the contribution of protein tyrosine phosphorylation. Results:,We found platelet eNOS was tyrosine phosphorylated under basal conditions. Thrombin induced a dose- and time-dependent increase in eNOS activity without altering overall level of tyrosine phosphorylation, although we did observe evidence of minor tyrosine dephosphorylation. In vitro tyrosine dephosphorylation of platelet eNOS using a recombinant protein tyrosine phosphatase enhanced thrombin-induced activity compared to thrombin alone, but had no effect on endothelial eNOS activity either at basal or after stimulation with bradykinin. Having shown that dephosphorylation could modulate platelet eNOS activity we examined the role of potential protein phosphatases important for platelet eNOS activity. We found SHP-1 protein tyrosine phosphatase, co-associated with platelet eNOS in resting platelets, but does not associate with eNOS in endothelial cells. Stimulation of platelets with thrombin increased SHP-1 association with eNOS, while inhibition of SHP-1 abolished the ability of thrombin to induce elevated eNOS activity. Conclusions:,Our data suggest a novel role for tyrosine dephosphorylation in platelet eNOS activation, which may be mediated by SHP-1. [source]


Role of hepatocytes and bile duct cells in preservation-reperfusion injury of liver grafts

LIVER TRANSPLANTATION, Issue 5 2001
Marián Kukan
In liver transplantation, it is currently hypothesized that nonparenchymal cell damage and/or activation is the major cause of preservation-related graft injury. Because parenchymal cells (hepatocytes) appear morphologically well preserved even after extended cold preservation, their injury after warm reperfusion is ascribed to the consequences of nonparenchymal cell damage and/or activation. However, accumulating evidence over the past decade indicated that the current hypothesis cannot fully explain preservation-related liver graft injury. We review data obtained in animal and human liver transplantation and isolated perfused animal livers, as well as isolated cell models to highlight growing evidence of the importance of hepatocyte disturbances in the pathogenesis of normal and fatty graft injury. Particular attention is given to preservation time-dependent decreases in high-energy adenine nucleotide levels in liver cells, a circumstance that (1) sensitizes hepatocytes to various stimuli and insults, (2) correlates well with graft function after liver transplantation, and (3) may also underlie the preservation time-dependent increase in endothelial cell damage. We also review damage to bile duct cells, which is increasingly being recognized as important in the long-lasting phase of reperfusion injury. The role of hydrophobic bile salts in that context is particularly assessed. Finally, a number of avenues aimed at preserving hepatocyte and bile duct cell integrity are discussed in the context of liver transplantation therapy as a complement to reducing nonparenchymal cell damage and/or activation. [source]


Nonsteroidal antiinflammatory drugs and prostaglandin E2 modulate the synthesis of osteoprotegerin and RANKL in the cartilage of patients with severe knee osteoarthritis

ARTHRITIS & RHEUMATISM, Issue 2 2010
Juan Moreno-Rubio
Objective Although the osteoprotegerin (OPG)/RANK/RANKL system is the main modulator of bone remodeling, it remains unclear whether it is regulated in cartilage during osteoarthritis (OA). The aim of this study was to examine whether nonsteroidal antiinflammatory drug (NSAID) treatment modulates the synthesis of OPG and RANKL in the cartilage of patients with OA, and to investigate whether prostaglandin E2 (PGE2) modifies this system in human OA chondrocytes in culture. Methods A 3-month clinical trial was carried out in 20 patients with severe knee OA, all of whom were scheduled to undergo knee replacement surgery. Ten of these patients were treated with celecoxib, and the other 10 patients, who did not want to be treated, served as the control group. After surgery, cartilage was processed for molecular biology studies. We also used human OA chondrocytes to examine the effects of PGE2 on OPG/RANKL synthesis, examining which surface receptors were affected by PGE2. Results In patients with OA, celecoxib decreased RANKL synthesis in the cartilage, thereby increasing the OPG:RANKL ratio. In human OA chondrocytes in culture, PGE2 elicited a dose- and time-dependent increase in the synthesis of RANKL, the extent of which was greater than that of OPG. Confocal microscopy revealed that PGE2 induced RANKL transport to the cell membrane. Only EP2/EP4 agonists reproduced the effects of PGE2 on OPG and RANKL induction. Conclusion Long-term NSAID treatment inhibited the resorptive signal synthesized by chondrocytes. In vitro, PGE2 regulated the expression and release of these key mediators of bone metabolism by articular chondrocytes. The role of OPG/RANK/RANKL in OA cartilage metabolism is still unknown, although the synthesis of these proteins would enable the cartilage to control the activity of subchondral bone cells. [source]


Microsomal UDP-Glucuronyltransferase in Rat Liver: Oxidative Activation

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2005
María Eugenia Letelier
In this work, we characterize Fe3+/ascorbate-induced activation of UDPGT activity prior to solubilization with Triton X-100 and after the oxidation process provoked the solubilization of the enzyme. We observed a time-dependent increase in UDPGT activity up to 20 min. incubation of the microsomes with Fe3+/ascorbate (3-times); after 20 min. incubation, however, we observed a time-dependent decrease in this activity to basal levels after 4 hr incubation. Treatment of microsomes with 0.1% Triton X-100 (5 min.) lead to a similar increase in UDPGT activity; higher detergent concentrations produced a dose-dependent decrease in this activity to basal levels with 1% Triton X-100. Interestingly, UDPGT activity was susceptible to activation only when associated to microsomal membranes and the loss of activation correlated with the solubilization of this activity. UDPGT activation by either Fe3+/ascorbate or Triton X-100 was correlated with an increase in p -nitrophenol apparent Km and Vmax values. This activation was prevented or reversed by the reducing agents glutathione, cysteine or dithiothreitol when it was induced by the Fe3+/ascorbate. Furthermore, the latter provoked a significant decrease in microsomal thiol content, effect not observed after treatment with Triton X-100. Our results suggest that the main mechanism responsible for Fe3+/ascorbate-induced UDPGT activation is likely to be the promotion of protein sulfhydryl oxidation; this mechanism appears to be different from detergent-induced UDPGT activation. [source]


YC-1 increases cyclo-oxygenase-2 expression through protein kinase G- and p44/42 mitogen-activated protein kinase-dependent pathways in A549 cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2002
Ming-Shyan Chang
YC-1, an activator of soluble guanylate cyclase (sGC), has been shown to increase the intracellular cGMP concentration. This study was designed to investigate the signaling pathway involved in the YC-1-induced COX-2 expression in A549 cells. YC-1 caused a concentration- and time-dependent increase in COX activity and COX-2 expression in A549 cells. Pretreatment of the cells with the sGC inhibitor (ODQ), the protein kinase G (PKG) inhibitor (KT-5823), and the PKC inhibitors (Go 6976 and GF10923X), attenuated the YC-1-induced increase in COX activity and COX-2 expression. Exposure of A549 cells to YC-1 caused an increase in PKC activity; this effect was inhibited by ODQ, KT-5823 or Go 6976. Western blot analyses showed that PKC-,, -,, -,, -, and -, isoforms were detected in A549 cells. Treatment of A549 cells with YC-1 or PMA caused a translocation of PKC-,, but not other isoforms, from the cytosol to the membrane fraction. Long-term (24 h) treatment of A549 cells with PMA down-regulated the PKC-,. The MEK inhibitor, PD 98059 (10,50 ,M), concentration-dependently attenuated the YC-1-induced increases in COX activity and COX-2 expression. Treatment of A549 cells with YC-1 caused an activation of p44/42 MAPK; this effect was inhibited by KT-5823, Go 6976, long-term (24 h) PMA treatment or PD98059, but not the p38 MAPK inhibitor, SB 203580. These results indicate that in human pulmonary epithelial cells, YC-1 might activate PKG through an upstream sGC/cGMP pathway to elicit PKC-, activation, which in turn, initiates p44/42 MAPK activation, and finally induces COX-2 expression. British Journal of Pharmacology (2002) 136, 558,567; doi:10.1038/sj.bjp.0704777 [source]


Transforming growth factor-, stimulates prostaglandin generation through cytosolic phospholipase A2 under the control of p11 in rat gastric epithelial cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2000
Satoshi Akiba
The regulatory effects of transforming growth factor (TGF)-, on phospholipase A2 (PLA2) isozymes contributing to prostaglandin generation in rat gastric epithelial RGM1 cells were examined. Stimulation with TGF-, for 24 h time-dependently induced prostaglandin E2 generation with an increase in cyclo-oxygenase-2 protein. The TGF-,-induced prostaglandin E2 generation was suppressed by NS-398, a cyclo-oxygenase-2 inhibitor. TGF-, stimulated the activity and the protein synthesis of cytosolic PLA2 (cPLA2). A time-dependent increase in cPLA2 protein occurred in parallel with PGE2 generation, which was inhibited by methyl arachidonyl fluorophosphonate (MAFP), a cPLA2 inhibitor. However, no change in activity of secretory PLA2 or Ca+2 -independent PLA2 was observed in the TGF-,-stimulated cells. Stimulation with the Ca2+ ionophore A23187 for 10 min induced MAFP-sensitive arachidonic acid liberation. Interestingly, preincubation with TGF-, for 24 h diminished A23187-stimulated arachidonic acid liberation despite the increase in cPLA2 protein. Under the conditions, TGF-, was found to increase p11, an endogenous cPLA2 suppressor, also known as annexin II light chain. The TGF-,-induced increase in p11 was suppressed by tyrphostin AG1478, an inhibitor of tyrosine kinase of epidermal growth factor receptor, which was also found to restore the inhibition by TGF-, of A23187-stimulated arachidonic acid liberation. However, TGF-, did not alter protein levels of annexin II heavy chain. These results suggest that TGF-, stimulates prostaglandin generation through an increase in cPLA2, the hydrolytic action of which may be under the control of p11. British Journal of Pharmacology (2000) 131, 1004,1010; doi:10.1038/sj.bjp.0703637 [source]


Influence of antiseptic agents on interleukin 8 release and transmigration of polymorphonuclear granulocytes in an in vitro model of peritonitis

BRITISH JOURNAL OF SURGERY (NOW INCLUDES EUROPEAN JOURNAL OF SURGERY), Issue 7 2000
W. Sendt
Background The effect of antiseptic agents on peritoneal cells is ill defined. The influence of taurolidine (TAU) and polyhexamide (HEX) was investigated in an in vitro model. Methods Human umbilical vein endothelial cells (HUVECs) and human peritoneal mesothelial cells (HPMCs) were laid on collagen-coated filter inserts (HUVECs on the bottom, HPMCs on the top), thus representing a two-chamber peritoneal model. When confluence was reached, HPMCs were stimulated with 0·5 ml tumour necrosis factor (TNF) , 10 ,g ml,1 for 4 h. Afterwards 0·5 ml TAU (1 and 2 per cent) or 0·5 ml HEX (0·1 and 0·2 per cent) solutions were added to the upper compartment. After 1 h polymorphonuclear granulocytes (PMNs) (105 ml,1) were added to the lower compartment. After 2 and 6 h aliquots were taken from both compartments, transmigrated PMNs were counted and interleukin (IL) 8 concentrations were measured. Controls were either TNF-,-stimulated HPMCs or stimulated HPMCs where culture medium had been substituted for TNF-,. Significance of differences was assessed by analysis of variance with Bonferroni corrections. Correlations were calculated by linear regression analysis. Results Stimulation with TNF-, led to a time-dependent increase in PMN transmigration. IL-8 secretion into the apical compartment increased time dependently, resulting in a gradient between the two chambers. After substitution of the stimulus by culture medium, significantly less IL-8 was measured in both compartments. PMN transmigration was almost absent. Addition of HEX resulted in an initial increase in IL-8 levels comparable to TNF controls without further changes. A concentration-dependent decrease in IL-8 gradient was associated with reduced transmigration. The IL-8 gradient between the upper and lower chambers correlated significantly with PMN transmigration (r = 0·8205, P < 0·0001). Conclusion The decrease in IL-8 gradients by HEX and the diminished IL-8 response after addition of TAU may reflect either anti-inflammatory effects or cellular damage. Both antiseptic solutions reduced PMN migration, irrespective of continuous stimulation in this model. © 2000 British Journal of Surgery Society Ltd [source]


Induction of V(D)J-mediated recombination of an extrachromosomal substrate following exposure to DNA-damaging agents

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 6 2007
Robert L. Pinsonneault
Abstract V(D)J recombinase normally mediates recombination signal sequence (RSS) directed rearrangements of variable (V), diversity (D), and joining (J) germline gene segments that lead to the generation of diversified T cell receptor or immunoglobulin proteins in lymphoid cells. Of significant clinical importance is that V(D)J-recombinase-mediated rearrangements at immune RSS and nonimmune cryptic RSS (cRSS) have been implicated in the genomic alterations observed in lymphoid malignancies. There is growing evidence that exposure to DNA-damaging agents can increase the frequency of V(D)J-recombinase-mediated rearrangements in vivo in humans. In this study, we investigated the frequency of V(D)J-recombinase-mediated rearrangements of an extrachromosomal V(D)J plasmid substrate following exposure to alkylating agents and ionizing radiation. We observed significant dose- and time-dependent increases in V(D)J recombination frequency (V(D)J RF) following exposure to ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS) but not a nonreactive analogue, methylsulfone (MeSulf). We also observed a dose-dependent increase in V(D)J RF when cells were exposed to gamma radiation. The induction of V(D)J rearrangements following exposure to DNA-damaging agents was not associated with an increase in the expression of RAG 1/2 mRNA compared to unexposed controls or an increase in expression of the DNA repair Ku70, Ku80 or Artemis proteins of the nonhomologous end joining pathway. These studies demonstrate that genotoxic alkylating agents and ionizing radiation can induce V(D)J rearrangements through a cellular response that appears to be independent of differential expression of proteins involved with V(D)J recombination. Environ. Mol. Mutagen., 2007. © 2007 Wiley-Liss, Inc. [source]


Mechanical stretch induces TGF-, synthesis in hepatic stellate cells

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2 2004
R. Sakata
Abstract Background, It is known that mechanical stress induces extracellular matrix via transforming growth factor-, (TGF-,) synthesis in vascular smooth muscle cells. Activated hepatic stellate cells (HSCs) are an important source of TGF-, in the liver. However, it remains unclear whether mechanical stress induces TGF-, in HSCs. The Rho small GTP-binding protein (Rho) has recently emerged as an important regulator of actin and cytoskeleton. We examined whether TGF-, is expressed in stretched HSCs and whether Rho is involved in stretch-induced TGF-, synthesis. Materials and methods, A cultured human HSC cell line, LI90, was used for this study. Hepatic stellate cells were cyclically stretched using the Flexercell® strain unit. Concentration of TGF-, in the conditioned medium was estimated by a bioassay using mink lung epithelial cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Transforming growth factor-, mRNA expression of HSCs was estimated by a reverse-transcription polymerase chain reaction. Replication-defective adenoviral vectors expressing a dominant negative type of Rho was utilized to suppress its effect on HSCs. Results, Transforming growth factor-, concentration of the conditioned media of stretched HSCs showed time-dependent increases as compared to nonstretched HSCs from 2 h to 24 h. Transforming growth factor-, mRNA expression in stretched HSCs was increased compared with that in nonstretched HSCs. Transfection of dominant negative Rho inhibited the stretch-induced TGF-, synthesis. Conclusions, Mechanical stretch enhanced TGF-, expression on mRNA and protein level in HSCs. Rho was closely related to stretch-induced TGF-, synthesis in HSCs. [source]


Cadmium-induced hormetic effect in differentiated Caco-2 cells: ERK and p38 activation without cell proliferation stimulation

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010
Marc Mantha
Cadmium (Cd) is a toxic metal that enters the food chain. Following oral ingestion, the intestinal epithelium may in part protect against Cd toxicity but is also a target tissue. Using human enterocytic-like Caco-2 cells, we have previously shown differences in sensitivity to Cd according to the differentiation status. The present study focuses on Cd effects on differentiated cells. Concentration and time-dependent increases in MTT (3-[4,5-dimethyl-2-thiazol-2-yl]-2,5-diphenyltetrazolium bromide assay) activity were observed in post-confluent cultures exclusively, with a twofold maximal stimulation in 21-day-old cells exposed to 10,µM Cd for 24,h. No concomitant increase in [methyl- 3H] thymidine incorporation was noted and Cd did not modify cell distribution in the cell-cycle phases. However, Cd-induced increase in MTT activity was inhibited by cycloheximine as well as by inhibitors of ERK1/2 and p38, but not by that of JNK. Consistently, Cd increased the levels of ERK1/2 and p38 phosphorylation. Inhibition of Ras-GTP or PI3K enhanced the stimulatory effect of Cd, whereas mTOR inhibition had no effect. Inhibition of G protein-phospholipase and PKC decreased MTT stimulation. These results show a hormesis-like stimulation of Cd on MTT activity in differentiated intestinal cells exclusively. This effect is not related to cell proliferation but more likely to increased protein synthesis which involves ERK1/2 and p38 cascades and possibly PLC-, signaling pathways. Because growth-related differentiation of intestinal cells is linked to the selective and sequential activation of MAPKs, the impacts that these Cd-induced perturbations in signaling pathways may have on intestinal functions clearly deserve to be investigated. J. Cell. Physiol. 224:250,261, 2010 © 2010 Wiley-Liss, Inc. [source]


Extracellular Enzyme Activities and Carbon Chemistry as Drivers of Tropical Plant Litter Decomposition

BIOTROPICA, Issue 3 2004
Steven D. Allison
ABSTRACT Litter quality parameters such as nitrogen and lignin content correlate with decomposition rates at coarse scales, but fine-scale mechanisms driving litter decomposition have proven more difficult to generalize. One potentially important driver of decomposition is the activity of extracellular enzymes that catalyze the degradation of complex compounds present in litter. To address the importance of this mechanism, we collected 15 Hawaiian plant litter types and decomposed them in fertilized and control plots for up to two years. We measured litter nutrient content and carbon chemistry prior to decomposition, as well as extracellular enzyme activities, mass loss, and litter nutrient content over time. We found that water-soluble carbon content, cellobiohydrolase activities, and polyphenol oxidase activities were significantly correlated with mass loss. Enzyme activities and decomposition rate constants both varied significantly by litter type, and fertilization increased mass loss rates in five litter types. Some litter types that decayed faster under fertilization also showed time-dependent increases in carbon-degrading enzyme activities, but others decayed faster independent of enzyme changes. These results suggest that extracellular enzyme activities partially determine litter decomposition rates, but high soluble carbon content may circumvent the requirement for enzyme-catalyzed decomposition. [source]