Home About us Contact | |||
Time Migration (time + migration)
Selected AbstractsOperator-oriented CRS interpolationGEOPHYSICAL PROSPECTING, Issue 6 2009German Hoecht ABSTRACT In common-reflection-surface imaging the reflection arrival time field is parameterized by operators that are of higher dimension or order than in conventional methods. Using the common-reflection-surface approach locally in the unmigrated prestack data domain opens a potential for trace regularization and interpolation. In most data interpolation methods based on local coherency estimation, a single operator is designed for a target sample and the output amplitude is defined as a weighted average along the operator. This approach may fail in presence of interfering events or strong amplitude and phase variations. In this paper we introduce an alternative scheme in which there is no need for an operator to be defined at the target sample itself. Instead, the amplitude at a target sample is constructed from multiple operators estimated at different positions. In this case one operator may contribute to the construction of several target samples. Vice versa, a target sample might receive contributions from different operators. Operators are determined on a grid which can be sparser than the output grid. This allows to dramatically decrease the computational costs. In addition, the use of multiple operators for a single target sample stabilizes the interpolation results and implicitly allows several contributions in case of interfering events. Due to the considerable computational expense, common-reflection-surface interpolation is limited to work in subsets of the prestack data. We present the general workflow of a common-reflection-surface-based regularization/interpolation for 3D data volumes. This workflow has been applied to an OBC common-receiver volume and binned common-offset subsets of a 3D marine data set. The impact of a common-reflection-surface regularization is demonstrated by means of a subsequent time migration. In comparison to the time migrations of the original and DMO-interpolated data, the results show particular improvements in view of the continuity of reflections events. This gain is confirmed by an automatic picking of a horizon in the stacked time migrations. [source] Effects of Near-Surface Absorption on Reflection Characteristics of Continental Interbedded Strata: the Dagang Oilfield as an ExampleACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010LI Guofa Abstract: Due to the effects of seismic wave field interference, the reflection events generated from interbedded and superposed sand and shale strata no longer have an explicit corresponding relationship with the geological interface. The absorption of the near-surface layer decreases the resolution of the seismic wavelet, intensifies the interference of seismic reflections from different sand bodies, and makes seismic data interpretation of thin interbedded strata more complex and difficult. In order to concretely investigate and analyze the effects of the near-surface absorption on seismic reflection characteristics of interbedded strata, and to make clear the ability of current technologies to compensate the near-surface absorption, a geological model of continental interbedded strata with near-surface absorption was designed, and the prestack seismic wave field was numerically simulated with wave equations. Then, the simulated wave field was processed by the prestack time migration, the effects of near-surface absorption on prestack and poststack reflection characteristics were analyzed, and the near-surface absorption was compensated for by inverse Q -filtering. The model test shows that: (1) the reliability of prediction and delineation of a continental reservoir with AVO inversion is degraded due to the lateral variation of the near-surface structure; (2) the corresponding relationships between seismic reflection events and geological interfaces are further weakened as a result of near-surface absorption; and (3) the current technology of absorption compensation probably results in false geological structure and anomaly. Based on the model experiment, the real seismic data of the Dagang Oil Field were analyzed and processed. The seismic reflection characteristics of continental interbedded strata were improved, and the reliability of geological interpretation from seismic data was enhanced. [source] Operator-oriented CRS interpolationGEOPHYSICAL PROSPECTING, Issue 6 2009German Hoecht ABSTRACT In common-reflection-surface imaging the reflection arrival time field is parameterized by operators that are of higher dimension or order than in conventional methods. Using the common-reflection-surface approach locally in the unmigrated prestack data domain opens a potential for trace regularization and interpolation. In most data interpolation methods based on local coherency estimation, a single operator is designed for a target sample and the output amplitude is defined as a weighted average along the operator. This approach may fail in presence of interfering events or strong amplitude and phase variations. In this paper we introduce an alternative scheme in which there is no need for an operator to be defined at the target sample itself. Instead, the amplitude at a target sample is constructed from multiple operators estimated at different positions. In this case one operator may contribute to the construction of several target samples. Vice versa, a target sample might receive contributions from different operators. Operators are determined on a grid which can be sparser than the output grid. This allows to dramatically decrease the computational costs. In addition, the use of multiple operators for a single target sample stabilizes the interpolation results and implicitly allows several contributions in case of interfering events. Due to the considerable computational expense, common-reflection-surface interpolation is limited to work in subsets of the prestack data. We present the general workflow of a common-reflection-surface-based regularization/interpolation for 3D data volumes. This workflow has been applied to an OBC common-receiver volume and binned common-offset subsets of a 3D marine data set. The impact of a common-reflection-surface regularization is demonstrated by means of a subsequent time migration. In comparison to the time migrations of the original and DMO-interpolated data, the results show particular improvements in view of the continuity of reflections events. This gain is confirmed by an automatic picking of a horizon in the stacked time migrations. [source] |