Time Domain Analysis (time + domain_analysis)

Distribution by Scientific Domains


Selected Abstracts


Abnormalities in cardiac and respiratory function observed during seizures in childhood

DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 1 2005
Mary E O'Regan MRCP MRCPCH
The aim of this study was to observe any changes in cardiac and respiratory function that occur during seizures. Thirty-seven children (20 males, 17 females; median age 7y 6mo, range 1y 6mo to 15y 6mo) were studied. We recorded electroencephalograms, respiratory rate, heart rate, electrocardiograms, blood pressure, oxygen saturation, heart rate variability (time domain analysis), and cardiac vagal tone. A respiratory pause was defined as an interruption in respiration lasting more than 3s but less than 15s. Apnoea was defined as absence of respiration for more than 15s. Tachypnoea was defined as a 10% increase in respiratory rate from the pre-ictal baseline. Bradypnoea was defined as a 10% decrease in respiratory rate from the pre-ictal baseline. Significant hypoxia was defined as a saturation of less than 85%. A significant change in heart rate was taken as a 10% increase or decrease below the baseline rate. Data were obtained from 101 seizures: 40 focal seizures, 21 generalized seizures, and 40 absences. Focal seizures were frequently associated with significant respiratory abnormalities, tachypnoea in 56%, apnoea in 30%, frequent respiratory pauses in 70%, and significant hypoxaemia in 40%. The changes seen in respiratory rate were statistically significant. Changes in cardiac parameters, an increase or decrease in heart rate, were observed in only 26% of focal seizures and 48% of generalized seizures. We conclude that seizure activity can disrupt normal physiological regulation and control of respiratory and cardiac activity. [source]


A global time domain circuit simulation of a microwave rectenna

INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 1-2 2007
Brahim Essakhi
Abstract The paper presents a global time domain simulation of a microwave rectenna studied for wireless energy transfer. The novelty of the work is to take into account both distributed electromagnetic parts of the antenna and the rectifier circuit including lumped elements. From a 3D finite element time domain electromagnetic modelling of the structure an equivalent circuit of the antenna is deduced: the input impedance is obtained as a function of frequency over a broad band. Then a rational approximation gives a corresponding PSPICE representation. The electromotive force induced between the ports of the antenna during the microwave illumination is directly computed from the 3D transient scattering problem. The resulting equivalent circuit of the antenna is finally incorporated into the electronic simulator PSPICE, together with the lumped components of the rectenna (ideal diodes and load). Thus a global non-linear time domain analysis of the whole structure becomes available. The results obtained with the methods presented in the paper are compared with those resulting from other techniques. The approach developed in the work could efficiently improve the design stage of rectennas devoted to microwave power transfer. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Beat-to-Beat QT Interval Variability Is Primarily Affected by the Autonomic Nervous System

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 3 2008
Ph.D., Takanao Mine M.D.
Background: Beat-to-beat QT interval variability is associated with life-threatening arrhythmias and sudden death, however, its precious mechanism and the autonomic modulation on it remains unclear. The purpose of this study was to determine the effect of drugs that modulate the autonomic nervous system on beat-to-beat QT interval. Method: RR and QT intervals were determined for 512 consecutive beats during fixed atrial pacing with and without propranolol and automatic blockade (propranolol plus atropine) in 11 patients without structural heart disease. Studied parameters included: RR, QTpeak (QRS onset to the peak of T wave), QTend (QRS onset to the end of T wave) interval, standard deviation (SD) of the RR, QTpeak, and QTend (RR-SD, QTpeak-SD, and QTend-SD), coefficients of variation (RR- CV, QTpeak-CV, and QTend-CV) from time domain analysis, total power (TP; RR-TP, QTpeak-TP, and QTend-TP), and power spectral density of the low-frequency band (LF; RR-LF, QTpeak-LF, and QTend-LF) and the high-frequency band (HF; RR-HF, QTpeak-HF and QTend-HF). Results: Administration of propranolol and infusion of atropine resulted in the reduction of SD, CV, TP, and HF of the QTend interval when compared to controlled atrial pacing (3.7 ± 0.6 and 3.5 ± 0.5 vs 4.8 ± 1.4 ms, 0.9 ± 0.1 and 0.9 ± 0.1 vs 1.2 ± 0.3%, 7.0 ± 2.2 and 7.0 ± 2.2 vs 13.4 ± 8.1 ms2, 4.2 ± 1.4 and 4.2 ± 1.2 vs 8.4 ± 4.9 ms2, respectively). Administration of propranolol and atropine did not affect RR interval or QTpeak interval indices during controlled atrial pacing. Conclusions: Beat-to-beat QT interval variability is affected by drugs that modulate the autonomic nervous system. [source]


Ectopic Beats in Heart Rate Variability Analysis: Effects of Editing on Time and Frequency Domain Measures

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 1 2001
Mirja A. Salo M.Sc.
Background: Various methods can be used to edit biological and technical artefacts in heart rate variability (HRV), but there is relatively little information on the effects of such editing methods on HRV. Methods: The effects of editing on HRV analysis were studied using R-R interval data of 10 healthy subjects and 10 patients with a previous myocardial infarction (Ml). R-R interval tachograms of verified sinus beats were analyzed from short-term (,5 min) and long-term (,24 hours) recordings by eliminating different amounts of real R-R intervals. Three editing methods were applied to these segments: (1) interpolation of degree zero, (2) interpolation of degree one, and (3) deletion without replacement. Results: In time domain analysis of short-term data, the standard deviation of normal-to-normal intervals (SDANN) was least affected by editing, and 30%-50% of the data could be edited by all the three methods without a significant error (< 5%). In the frequency domain analysis, the method of editing resulted in remarkably different changes and errors for both the high-frequency (HF) and the low-frequency (LF) spectral components. The editing methods also yielded in different results in healthy subjects and AMI patients. In 24-hour HRV analysis, up to 50% could be edited by all methods without an error larger than 5% in the analysis of the standard deviation of normal to normal intervals (SDNN). Both interpolation methods also performed well in the editing of the long-term power spectral components for 24-hour data, but with the deletion method, only 5% of the data could be edited without a significant error. Conclusions: The amount and type of editing R-R interval data have remarkably different effects on various HRV indices. There is no universal method for editing ectopic beats that could be used in both the time-domain and the frequency-domain analysis of HRV. A.N.E. 2001;6(1):5,17 [source]