Home About us Contact | |||
Tissue Mechanical Properties (tissue + mechanical_property)
Selected AbstractsAdvanced Material Strategies for Tissue Engineering ScaffoldsADVANCED MATERIALS, Issue 32-33 2009Lisa E. Freed Abstract Tissue engineering seeks to restore the function of diseased or damaged tissues through the use of cells and biomaterial scaffolds. It is now apparent that the next generation of functional tissue replacements will require advanced material strategies to achieve many of the important requirements for long-term success. Here, we provide representative examples of engineered skeletal and myocardial tissue constructs in which scaffolds were explicitly designed to match native tissue mechanical properties as well as to promote cell alignment. We discuss recent progress in microfluidic devices that can potentially serve as tissue engineering scaffolds, since mass transport via microvascular-like structures will be essential in the development of tissue engineered constructs on the length scale of native tissues. Given the rapid evolution of the field of tissue engineering, it is important to consider the use of advanced materials in light of the emerging role of genetics, growth factors, bioreactors, and other technologies. [source] Bone Structural and Mechanical Properties Are Affected by Hypotransferrinemia But Not by Iron Deficiency in MiceJOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2000Elise A. Malecki Abstract Hypotransferrinemia is a genetic defect in mice resulting in <1% of normal plasma transferrin (Tf) concentrations; heterozygotes for this mutation (+/hpx) have low circulating Tf concentrations. We used this mutant mouse in conjunction with dietary iron deficiency to study the influence of Tf and iron on bone structural and mechanical properties. Twenty-one weanling wild-type BALB/cj +/+ mice and 21 weanling +/hpx mice were fed iron-deficient or iron-adequate diets for 8 weeks. Twelve hpx/hpx mice were fed the iron-adequate diet. Hypotransferrinemia resulted in increased tibia iron and calcium concentrations, lower femur failure load, and extrinsic stiffness. Because the femurs of the hpx/hpx mice were disproportionately small, these bones actually had increased tissue material properties (ultimate stress [US] and modulus of elasticity) than those of wild-type mice. This is the first report on the effect of dietary iron deficiency on bone structural and mechanical properties. Dietary iron deficiency in +/+ and +/hpx mice decreased tibia iron concentrations but had no effect on tibia calcium and phosphorus concentrations or femur structural or mechanical properties. Because the bones of the hpx/hpx mice were small, but had superior tissue mechanical properties, we conclude that Tf is important for normal bone mineralization. (J Bone Miner Res 2000; 15: 271,277) [source] Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateauJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2005Joseph T. Samosky Abstract The concentration of glycosaminoglycan (GAG) in articular cartilage is known to be an important determinant of tissue mechanical properties based on numerous studies relating bulk GAG and mechanical properties. To date limited information exists regarding the relationship between GAG and mechanical properties on a spatially-localized basis in intact samples of native tissue. This relation can now be explored by using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC,a recently available non-destructive magnetic resonance imaging method for measuring glycosaminoglycan concentration) combined with non-destructive mechanical indentation testing. In this study, three tibial plateaus from patients undergoing total knee arthroplasty were imaged by dGEMRIC. At 33,44 test locations for each tibial plateau, the load response to focal indentation was measured as an index of cartilage stiffness. Overall, a high correlation was found between the dGEMRIC index (T) and local stiffness (Pearson correlation coefficients r = 0.90, 0.64, 0.81; p < 0.0001) when the GAG at each test location was averaged over a depth of tissue comparable to that affected by the indentation. When GAG was averaged over larger depths, the correlations were generally lower. In addition, the correlations improved when the central and peripheral (submeniscal) areas of the tibial plateau were analyzed separately, suggesting that a factor other than GAG concentration is also contributing to indentation stiffness. The results demonstrate the importance of MRI in yielding spatial localization of GAG concentration in the evaluation of cartilage mechanical properties when heterogeneous samples are involved and suggest the possibility that the evaluation of mechanical properties may be improved further by adding other MRI parameters sensitive to the collagen component of cartilage. © 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source] RELATIONSHIPS BETWEEN PRIMARY PLANT CELL WALL ARCHITECTURE AND MECHANICAL PROPERTIES FOR ONION BULB SCALE EPIDERMAL CELLSJOURNAL OF TEXTURE STUDIES, Issue 6 2004DAVID G. HEPWORTH ABSTRACT This article investigates onion epidermal tissue (Allium cepa) using a combination of mechanical testing, microscopy and modeling and relates tissue mechanical properties to the known structure of the cell walls. Onion epidermal tissue has a simple, regular structure of elongated cells, which have been used to enable the contributions to mechanical properties of cell walls and of higher order structures to be separated and analyzed. Two models of wall behavior were used to explore how Poisson's ratio of cell walls parallel to the plane of the epidermal surface may vary with applied strain. In the first model, cellulose microfibrils can be reorientated in an unrestricted way with the result that the cell wall volume decreases. In the second model the volume of the cell wall remains constant, which controls the reorientation of microfibrils, hence the Poisson's ratio. Measurements made from uniaxially stretched cells show that the data most closely fits model I, therefore, it is concluded that the bulk of the matrix has little influence on the observed mechanical properties (at a test rate of 1 mm/min), allowing cellulose microfibrils to reorient through the matrix in an unrestricted way during uniaxial tests. In its mechanical attributes the primary cell wall resembles more a knitted cloth than a semisolid composite material. When biaxial stretching is applied to tissue, so that there is no re-orientation of microfibrils, the cell wall material is still able to reach surprisingly large elastic strains of up to 12.5% and no plastic deformation was recorded. Current theory suggests that cellulose microfibrils can stretch elastically by a maximum of 7%, therefore further work is required to identify mechanisms that could account for the extra elastic strain. [source] Three-dimensional subzone-based reconstruction algorithm for MR elastographyMAGNETIC RESONANCE IN MEDICINE, Issue 5 2001Elijah E.W. Van Houten Abstract Accurate characterization of harmonic tissue motion for realistic tissue geometries and property distributions requires knowledge of the full three-dimensional displacement field because of the asymmetric nature of both the boundaries of the tissue domain and the location of internal mechanical heterogeneities. The implications of this for magnetic resonance elastography (MRE) are twofold. First, for MRE methods which require the measurement of a harmonic displacement field within the tissue region of interest, the presence of 3D motion effects reduces or eliminates the possibility that simpler, lower-dimensional motion field images will capture the true dynamics of the entire stimulated tissue. Second, MRE techniques that exploit model-based elastic property reconstruction methods will not be able to accurately match the observed displacements unless they are capable of accounting for 3D motion effects. These two factors are of key importance for MRE techniques based on linear elasticity models to reconstruct mechanical tissue property distributions in biological samples. This article demonstrates that 3D motion effects are present even in regular, symmetric phantom geometries and presents the development of a 3D reconstruction algorithm capable of discerning elastic property distributions in the presence of such effects. The algorithm allows for the accurate determination of tissue mechanical properties at resolutions equal to that of the MR displacement image in complex, asymmetric biological tissue geometries. Simulation studies in a realistic 3D breast geometry indicate that the process can accurately detect 1-cm diameter hard inclusions with 2.5× elasticity contrast to the surrounding tissue. Magn Reson Med 45:827,837, 2001. © 2001 Wiley-Liss, Inc. [source] |