Tissue Capsule (tissue + capsule)

Distribution by Scientific Domains

Kinds of Tissue Capsule

  • connective tissue capsule


  • Selected Abstracts


    Type and ultrastructure of Didymocystis wedli and Koellikerioides intestinalis (Digenea, Didymozoidae) cysts in captive Atlantic bluefin tuna (Thunnus thynnus Linnaeus, 1758)

    JOURNAL OF APPLIED ICHTHYOLOGY, Issue 6 2009
    I. Mladineo
    Summary Tissue encapsulation, one of the most common tissue reactions to invading parasites, is the hallmark sign of didymozoid (Digenea, Didymozoidae) infections in fish. Investigated were the types of intermediate filaments and ultrastructure of the connective tissue capsule elicited by the presence of didymozoids in the gills and intestine of Atlantic bluefin tuna (Thunnus thynnus Linnaeus, 1758). The evaluation was done performing TEM microscopy of two tissue-embedded didymozoid species, along with monoclonal antibodies labeling (anti-fish collagen type I, anti-human cytokeratin, anti-vimentin antibodies). Ultrastructure of Didymocystis wedli (Ariola, 1902) (prevalence = 61.75%, abundance = 28.91) encapsulated in gill filaments and Koellikerioides intestinalis (Yamaguti, 1970) (prevalence = 54.65%, abundance = 10.96) in the intestinal submucosa showed that the thin parasitic hindbody tegumentum was directly embedded in layers of connective tissue bands. Only a few cellular elements (lymphocytes, fibroblasts and fibrocytes) infiltrated the connective tissue capsule, which differed between the two didymozoid species in thickness, not in the type of filaments expressed. Cysts showed positive reaction to extracellular collagen as well as appearing positive for the cytoskeletal intermediate filaments vimentin and cytokeratin. [source]


    Bone healing around implants placed in a jaw defect augmented with Bio-Oss®

    JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 11 2000
    An experimental study in dogs
    Abstract The present experiment was carried out to study some tissue reactions around implants that were placed in an edentulous ridge which had been augmented with deproteinized natural bovine cancellous bone mineral. In 4 male beagle dogs, the premolars in the right side of the mandible were extracted and a large buccal ridge defect was created by mechanical means. The bone plate at the lingual aspect of the defect was left intact. 5 months later, the distal 2/3 of the defect area was augmented with Bio-Oss® (Geistlich Sons Ltd, Wolhusen, Switzerland) mixed with a fibrin sealer (Tisseel®, Immuno AG, Vienna, Austria). After 3 months of healing, 3 fixtures (Astra Tech AB, Mölndal, Sweden; TiO-blast; 8×3.5 mm) were installed in the mandible; 2 were placed in the augmented portion and 1 was placed in the non-augmented portion of the defect. After a healing period of 3 months, abutment connection was performed and a plaque control period initiated. 4 months later, the dogs were sacrificed and each implant region was dissected. The tissue samples were dehydrated, embedded in plastic, sectioned in the bucco-lingual plane and examined in the light microscope. It was observed that osseointegration failed to occur to implant surfaces within an alveolar ridge portion previously augmented with Bio-Oss®. In the augmented portion of the crest, the graft particles were separated from the host tissue as well as from the implant by a well-defined connective tissue capsule. Although the lingual aspect of all fixtures (test and control) was in contact with hard tissue at the time of installation, after 4 months of function, a deep vertical bone defect frequently had formed at the lingual surface of the implants. It was concluded that in this model (i) Bio-Oss® failed to integrate with the host bone tissue and (ii) no osseointegration occurred to the implants within the augmented portion of the crest. [source]


    Myxobolus erythrophthalmi sp. n. and Myxobolus shaharomae sp. n. (Myxozoa: Myxobolidae) from the internal organs of rudd, Scardinius erythrophthalmus (L.), and bleak, Alburnus alburnus (L.)

    JOURNAL OF FISH DISEASES, Issue 3 2009
    K Molnár
    Abstract During a survey of myxosporean parasites of cyprinid fish in Hungary, infections caused by unknown Myxobolus spp. were found in the internal organs of rudd, Scardinius erythrophthalmus, and bleak, Alburnus alburnus. Small plasmodia developed in blood vessels of the kidney, liver, testes and intestinal wall. The parasites were studied on the basis of spore morphology and by histological and molecular methods. In most cases, plasmodia were surrounded by host tissue without a host reaction; however, in advanced cases, a connective tissue capsule was seen around plasmodia. Spores collected from the two fish species differed from each other and from the known Myxobolus spp. both in their morphology and 18S rDNA sequences. The two species, described as M. erythrophthalmi sp. n. from rudd and M. shaharomae sp. n. from bleak, are characterized by a specific histotropism to blood vessels, while the organ specificity involves the kidney and for the latter species, most internal organs. [source]


    The Microanatomy of the Palatine Tonsils of the One-Humped Camel (Camelus dromedarius)

    THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 8 2009
    Mohamed Zidan
    Abstract Tonsils form a first line of defense against foreign antigens and are also a route of entry and a replication site for some pathogens. The palatine tonsils are the largest of all the tonsils. Despite their general importance, little is known about the microanatomy of the palatine tonsils of the one-humped camel. Palatine tonsils of 10 clinically healthy male camels were obtained directly after slaughtering for human consumption. The tonsils were examined macroscopically and by light, scanning, and transmission electron microscopy. Palatine tonsils had the unique form of several spherical macroscopic nodules protruding into the pharyngeal lumen. These spherical masses were numerous and close together in the lateral oropharyngeal wall, with a few solitary nodules in the dorsal wall. Each nodule had one or two apical openings to crypts, and was enclosed by an incomplete connective tissue capsule and covered apically with stratified squamous keratinized epithelium. The tonsillar crypt was lined with stratified squamous non keratinized epithelium. Several lymphocytes infiltrated the epithelial layer, forming patches of reticular epithelium. Lymphoid follicles with obvious germinal centers extended under the epithelial surface. Diffusely localized lymphocytes were seen in the interfollicular region. High endothelial venules, dendritic cells, macrophages, and plasma cells were observed among these lymphocytes. The unique arrangement of palatine tonsils in separate units with individual crypts results in a very large surface exposed to antigen and indicates a significant immunological role of palatine tonsils in the camel. Anat Rec, 292:1192,1197, 2009. © 2009 Wiley-Liss, Inc. [source]


    Functional Morphology of the Nasal Complex in the Harbor Porpoise (Phocoena phocoena L.)

    THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 6 2009
    Stefan Huggenberger
    Abstract Toothed whales (Odontoceti, Cetacea) are the only aquatic mammals known to echolocate, and probably all of them are able to produce click sounds and to synthesize their echoes into a three-dimensional "acoustic image" of their environment. In contrast to other mammals, toothed whales generate their vocalizations (i.e., echolocation clicks) by a pneumatically-driven process in their nasal complex. This study is dedicated to a better understanding of sound generation and emission in toothed whales based on morphological documentation and bioacoustic interpretation. We present an extensive description of the nasal morphology including the nasal muscles in the harbor porpoise (Phocoena phocoena) using macroscopical dissections, computer-assisted tomography, magnetic resonance imaging, and histological sections. In general, the morphological data presented here substantiate and extend the unified "phonic lips" hypothesis of sound generation in toothed whales suggested by Cranford et al. (J Morphol 1996;228:223,285). There are, however, some morphological peculiarities in the porpoise nasal complex which might help explain the typical polycyclic structure of the clicks emitted. We hypothesize that the tough connective tissue capsule (porpoise capsule) surrounding the sound generating apparatus is a structural prerequisite for the production of these high-frequency clicks. The topography of the deep rostral nasal air sacs (anterior nasofrontal and premaxillary sacs), narrowing the potential acoustic pathway from the phonic lips to the melon (a large fat body in front of the nasal passage), and the surrounding musculature should be crucial factors in the formation of focused narrow-banded sound beams in the harbor porpoise. Anat Rec, 292:902,920, 2009. © 2009 Wiley-Liss, Inc. [source]


    Histological Structure of the Adrenal Gland of the Bottlenose Dolphin (Tursiops truncatus) and the Striped Dolphin (Stenella coeruleoalba) from the Adriatic Sea

    ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2010
    S. Vukovi
    Summary The structure of the adrenal gland was studied in 11 bottlenose dolphins (Tursiops truncatus), and five striped dolphins (Stenella coeruleoalba). These species are legally protected in Croatia. All examined animals died of natural causes and were found stranded along eastern Adriatic coast. In both species the adrenal gland consists of a cortex and a medulla; the cortex is divided into three zones. Whereas in the bottlenose dolphin, there is a zona arcuata which contains columnar cells arranged in the form of arches; in the striped dolphin this zone is replaced by zona glomerulosa containing rounded clusters of polygonal cells. In both species, the zona fasciculata consists of radially oriented cords of polygonal cells, whereas in zona reticularis cells are arranged in branching and anastomosing cords. The adrenal medulla in both species contains dark, epinephrine-secreting cells and light norepinephrine-secreting cells. Epinephrine-secreting cells are localized in the outer part of the medulla, whereas norepinephrine-secreting cells are found in the inner part, arranged in clusters and surrounded by septa of thin connective tissue. The gland is surrounded by a thick connective-tissue capsule, from where thick trabeculae extend towards the interior. In the bottlenose dolphin, group of cells resembling both medullar and cortical cells can be seen within the capsule; whereas only groups of cells resembling cortical cells are found within the capsule of the striped dolphin. In the bottlenose dolphin invagination of the adrenal cortex into the medulla is obvious as well as medullary protrusions extending through cortex to the connective tissue capsule. [source]


    Highly Permeable Genipin-Cross-linked Gelatin Conduits Enhance Peripheral Nerve Regeneration

    ARTIFICIAL ORGANS, Issue 12 2009
    Ju-Ying Chang
    Abstract Here we have evaluated peripheral nerve regeneration with a porous biodegradable nerve conduit (PGGC), which was made from genipin-cross-linked gelatin. To examine the effect of pores, nonporous genipin-cross-linked gelatin conduit (GGC) was considered as the control. Both the PGGC and the GGC were dark blue in appearance with a concentric and round lumina. The PGGC featured an outer surface with pores of variable size homogeneously traversing, and a partially fenestrated inner surface connected by an open trabecular meshwork. The GGC had a rough outer surface whereas its inner lumen was smooth. Both PGGCs and GGCs had similar hydrophilicity on condition of the same material and cross-linking degree. The porosity of PGGCs and GGCs was 90.8 ± 0.9% and 24.3 ± 2.9%, respectively. The maximum tensile force of the GGCs (0.12 ± 0.06 kN) exceeded that of the PGGCs (0.03 ± 0.01 kN), but the PGGCs had a higher swelling ratio than GGCs at 0.5, 1, 3, 6, 12, 24, 48, 60, 72, and 84 h after soaking in deionized water. Cytotoxic testing revealed the soaking solutions of both of the tube composites would not produce cytotoxicity to cocultured Schwann cells. After subcutaneous implantation on the dorsal side of the rat, the PGGC was degraded completely after 12 weeks of implantation whereas a thin tissue capsule was formed encapsulating the partially degraded GGC. Biodegradability of both of the tube groups and their effectiveness as a guidance channel were examined as they were used to repair a 10 mm gap in the rat sciatic nerve. As a result, fragmentation of the GGC was still seen after 12 weeks of implantation, yet the PGGC had been completely degraded. Histological observation showed that numerous myelinated axons had crossed over the gap region in the PGGCs after 8 weeks of implantation despite only few myelinated axons and unmyelinated axons mostly surrounded by Schwann cells seen in the GGCs. In addition, the regenerated nerves in the PGGCs presented a significantly higher nerve conductive velocity than those in the GGCs (P < 0.05). Thus, the PGGCs can not only offer effective aids for regenerating nerves but also accelerate favorable nerve functional recovery compared with the GGCs. [source]