Home About us Contact | |||
Tilt System (tilt + system)
Selected AbstractsOctahedral tilt twinning and compositional modulation in NaLaMgWO6ACTA CRYSTALLOGRAPHICA SECTION B, Issue 6 2009Graham King A combination of selected-area electron diffraction (SAED), neutron powder diffraction (NPD) and high-resolution transmission electron microscopy (HRTEM) reveals a complex superstructure in the ordered perovskite NaLaMgWO6. Through indexing of SAED patterns the unit-cell dimensions are found to be 46.8 × 7.8 × 7.9,Å, which corresponds to a 12ap× 2ap× 2ap superstructure of the simple perovskite unit cell. HRTEM images reveal the formation of an unmistakable stripe contrast that repeats with the same periodicity. Doubling of the b and c axes is brought about by a combination of layered ordering of Na and La, rock-salt ordering of Mg and W, and octahedral tilting. The a axis repeat distance results from a one-dimensional twinning of the octahedral tilts in combination with a compositional modulation. Modeling of the NPD pattern shows that the underlying tilt system is a,a,c0 with tilt angles of ,,8° about the a and b axes. The octahedral tilt-twin boundaries run perpendicular to the a axis and are separated by 6ap. Simulated HRTEM images show that octahedral tilt twinning alone cannot explain the stripes seen in the HRTEM images, rather a compositional modulation involving the A -site cations is necessary to explain the experimental images. [source] (111)p microtwinning in SrRuO3 thin films on (001)p LaAlO3ACTA CRYSTALLOGRAPHICA SECTION B, Issue 6 2009Y. Han SrRuO3 (SRO) thin films grown on (001)p (p = pseudocubic) oriented LaAlO3 (LAO) by pulsed laser deposition have been characterized using transmission electron microscopy. Observations along the ,100,p directions suggests that although the SRO layer maintains a pseudocube-to-pseudocube orientation relationship with the underlying LAO substrate, it has a ferroelastic domain structure associated with a transformation on cooling to room temperature to an orthorhombic Pbnm phase (a,a,c+ Glazer tilt system). In addition, extra diffraction spots located at ±1/6(ooo)p and ±1/3(ooo)p (where `o' indicates an index with an odd number) positions were obtained in ,110,p zone-axis diffraction patterns. These were attributed to the existence of high-density twins on {111}p pseudocubic planes within the SrRuO3 films rather than to more conventional mechanisms for the generation of superstructure reflections. [source] Quantitative description of the tilt of distorted octahedra in ABX3 structuresACTA CRYSTALLOGRAPHICA SECTION B, Issue 2 2007Rafael Tamazyan A description of the tilt of octahedra in ABX3 perovskite-related structures is proposed that can be used to extract the unique values for the tilt parameters ,, , and , of ABX3 structures with regular and distorted octahedra up to the point symmetry , from atomic coordinates and lattice parameters. The geometry of the BX6 octahedron is described by three B,X bond lengths (r1, r2, r3) and three X,B,X bond angles (,12, ,13 and ,23) or alternatively by a local strain tensor together with an average B,X bond length. Connections between the proposed method and Glazer's tilt system are discussed. The method is used to analyze structural transformations of I2/c, Pbnm and Immm structures. The proposed description allows the analysis of group,subgroup relations for the ABX3 structures with distorted octahedra, in terms of octahedral deformations and tilting. The method might also be of interest in the study of the phase transitions in the family of ABX3 structures. [source] Structure determination of A2M3+TaO6 and A2M3+NbO6 ordered perovskites: octahedral tilting and pseudosymmetryACTA CRYSTALLOGRAPHICA SECTION B, Issue 3 2006Paris W. Barnes The room-temperature crystal structures of six A2M3+M5+O6 ordered perovskites have been determined from neutron and X-ray powder diffraction data. Ba2YNbO6 adopts the aristotype high-symmetry cubic structure (space group Fmm, Z = 4). The symmetries of the remaining five compounds were lowered by octahedral tilting distortions. Out-of-phase rotations of the octahedra about the c axis were observed in Sr2CrTaO6 and Sr2GaTaO6, which lowers the symmetry to tetragonal (space group = I4/m, Z = 2, Glazer tilt system = a0a0c,). Octahedral tilting analogous to that seen in GdFeO3 occurs in Sr2ScNbO6, Ca2AlNbO6 and Ca2CrTaO6, which lowers the symmetry to monoclinic (space group P21/n, Z = 2, Glazer tilt system = a,a,c+). The Sr2MTaO6 (M = Cr, Ga, Sc) compounds have unit-cell dimensions that are highly pseudo-cubic. Ca2AlNbO6 and Ca2CrTaO6 have unit-cell dimensions that are strongly pseudo-orthorhombic. This high degree of pseudosymmetry complicates the space-group assignment and structure determination. The space-group symmetries, unit-cell dimensions and cation ordering characteristics of an additional 13 compositions, as determined from X-ray powder diffraction data, are also reported. An analysis of the crystal structures of 32 A2MTaO6 and A2MNbO6 perovskites shows that in general the octahedral tilt system strongly correlates with the tolerance factor. [source] Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3ACTA CRYSTALLOGRAPHICA SECTION B, Issue 2 2002G. O. Jones Rietveld neutron powder profile analysis of the compound Na0.5Bi0.5TiO3 (NBT) is reported over the temperature range 5,873,K. The sequence of phase transitions from the high-temperature prototypic cubic structure (above 813,K), to one of tetragonal (673,773,K) and then rhombohedral structures (5,528,K) has been established. Coexisting tetragonal/cubic (773,813,K) and rhombohedral/tetragonal (with an upper temperature limit of 145,K between 528 and 673,K) phases have also been observed. Refinements have revealed that the rhombohedral phase, space group R3c, with aH = 5.4887,(2), cH = 13.5048,(8),Å, V = 352.33,(3),Å3, Z = 6 and Dx = 5.99,Mg,m,3, exhibits an antiphase, a,a,a, oxygen tilt system, , = 8.24,(4)°, with parallel cation displacements at room temperature. The tetragonal phase, space group P4bm, with aT = 5.5179,(2), cT = 3.9073,(2),Å, V = 118.96,(1),Å3, Z = 2 and Dx = 5.91,Mg,m,3, possesses an unusual combination of in-phase, a0a0c+ oxygen octahedra tilts, , = 3.06,(2)°, and antiparallel cation displacements along the polar axis. General trends of cation displacements and the various deviations of the octahedral network from the prototypic cubic perovskite structure have been established and their systematic behaviour with temperature is reported. An investigation of phase transition behaviour using second harmonic generation (SHG) to establish the centrosymmetric or non-centrosymmetric nature of the various phases is also reported. [source] Prediction of the crystal structures of perovskites using the software program SPuDSACTA CRYSTALLOGRAPHICA SECTION B, Issue 6 2001Michael W. Lufaso The software program SPuDS has been developed to predict the crystal structures of perovskites, including those distorted by tilting of the octahedra. The user inputs the composition and SPuDS calculates the optimal structure in ten different Glazer tilt systems. This is performed by distorting the structure to minimize the global instability index, while maintaining rigid octahedra. The location of the A -site cation is chosen so as to maximize the symmetry of its coordination environment. In its current form SPuDS can handle up to four different A -site cations in the same structure, but only one octahedral ion. Structures predicted by SPuDS are compared with a number of previously determined structures to illustrate the accuracy of this approach. SPuDS is also used to examine the prospects for synthesizing new compounds in tilt systems with multiple A -site coordination geometries (a+a+a+, a0b+b+, a0b,c+). [source] Synchrotron X-ray study of noncentrosymmetric Tb3RuO7 with partial structural disorderACTA CRYSTALLOGRAPHICA SECTION C, Issue 7 2007Nobuo Ishizawa Single-crystal synchrotron X-ray diffraction reveals partial structural disorder of Tb atoms at 293,K in flux-grown Tb3RuO7 (triterbium ruthenium heptaoxide) crystals. The structure is noncentrosymmetric and composed of infinite single chains of corner-linked RuO6 octahedra embedded in a Tb3O matrix. Two Tb atom sites out of the six crystallographically independent Tb sites are split into two positions. The split sites are separated by approximately 0.3,0.4,Å, with slightly different coordination environments. The RuO6 octahedra in the present P21nb modification have two tilt systems about the a and c axes, in contrast with a single tilt about c in the other Cmcm modifications of Ln3RuO7 (Ln = lanthanoid elements). [source] |