Tidal Tails (tidal + tail)

Distribution by Scientific Domains


Selected Abstracts


Quantitative analysis of clumps in the tidal tails of star clusters

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
A. Just
ABSTRACT Tidal tails of star clusters are not homogeneous but show well-defined clumps in observations as well as in numerical simulations. Recently, an epicyclic theory for the formation of these clumps was presented. A quantitative analysis was still missing. We present a quantitative derivation of the angular momentum and energy distribution of escaping stars from a star cluster in the tidal field of the Milky Way and derive the connection to the position and width of the clumps. For the numerical realization we use star-by-star N -body simulations. We find a very good agreement of theory and models. We show that the radial offset of the tidal arms scales with the tidal radius, which is a function of cluster mass and the rotation curve at the cluster orbit. The mean radial offset is 2.77 times the tidal radius in the outer disc. Near the Galactic Centre the circumstances are more complicated, but to lowest order the theory still applies. We have also measured the Jacobi energy distribution of bound stars and showed that there is a large fraction of stars (about 35 per cent) above the critical Jacobi energy at all times, which can potentially leave the cluster. This is a hint that the mass loss is dominated by a self-regulating process of increasing Jacobi energy due to the weakening of the potential well of the star cluster, which is induced by the mass loss itself. [source]


A census of young stellar populations in the warm ULIRG PKS 1345+12

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
J. Rodríguez Zaurín
ABSTRACT We present a detailed investigation of the young stellar populations (YSP) in the radio-loud ultraluminous infrared galaxy (ULIRG), PKS 1345+12 (z= 0.12), based on high-resolution Hubble Space Telescope (HST) imaging and long-slit spectra taken with the William Herschel Telescope (WHT) at La Palma. While the images clearly show bright knots suggestive of super star clusters (SSCs), the spectra reveal the presence of YSP in the diffuse light across the full extent of the halo of the merging double nucleus system. Spectral synthesis modelling has been used to estimate the ages of the YSP for both the SSC and the diffuse light sampled by the spectra. For the SSC, we find ages tSSC < 6 Myr with reddenings 0.2 < E(B,V) < 0.5 and masses 106 < MYSPSSC < 107 M,. In the region to the south of the western nucleus that contains the SSC our modelling of the spectrum of the diffuse light is also consistent with a relatively young age for the YSP (,5 Myr), although older YSP ages cannot be ruled out. However, in other regions of the galaxy we find that the spectra of the diffuse light component can only be modelled with a relatively old post-starburst YSP (0.04,1.0 Gyr) or with a disc galaxy template spectrum. The results demonstrate the importance of accounting for reddening in photometric studies of SSC and highlight the dangers of focusing on the highest surface brightness regions when trying to obtain a general impression of the star formation activity in the host galaxies of ULIRGs. The case of PKS 1345+12 provides clear evidence that the star formation histories of the YSP in ULIRGs are complex. While the SSC represent the vigorous phase of star formation associated with the final stages of the merger, the YSP in the diffuse light are likely to represent star formation in one or more of the merging galaxies at an earlier stage or prior to the start of the merger. Intriguingly, our long-slit spectra show line splitting at the locations of the SSC, indicating that they are moving at up to 450 km s,1 with respect to the local ambient gas. Given their kinematics, it is plausible that the SSCs have been formed either in fast moving gas streams/tidal tails that are falling back into the nuclear regions as part of the merger process or as a consequence of jet-induced star formation linked to the extended, diffuse radio emission detected in the halo of the galaxy. [source]


Quantitative analysis of clumps in the tidal tails of star clusters

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
A. Just
ABSTRACT Tidal tails of star clusters are not homogeneous but show well-defined clumps in observations as well as in numerical simulations. Recently, an epicyclic theory for the formation of these clumps was presented. A quantitative analysis was still missing. We present a quantitative derivation of the angular momentum and energy distribution of escaping stars from a star cluster in the tidal field of the Milky Way and derive the connection to the position and width of the clumps. For the numerical realization we use star-by-star N -body simulations. We find a very good agreement of theory and models. We show that the radial offset of the tidal arms scales with the tidal radius, which is a function of cluster mass and the rotation curve at the cluster orbit. The mean radial offset is 2.77 times the tidal radius in the outer disc. Near the Galactic Centre the circumstances are more complicated, but to lowest order the theory still applies. We have also measured the Jacobi energy distribution of bound stars and showed that there is a large fraction of stars (about 35 per cent) above the critical Jacobi energy at all times, which can potentially leave the cluster. This is a hint that the mass loss is dominated by a self-regulating process of increasing Jacobi energy due to the weakening of the potential well of the star cluster, which is induced by the mass loss itself. [source]


Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2007
Jaros, aw Klimentowski
ABSTRACT We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal (dSph) galaxies. For this purpose we have run a high-resolution N -body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disc and it has a NFW-like dark matter (DM) halo. After 10 Gyr of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions. We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. We also study another source of possible contamination by adding stars from the Milky Way. We demonstrate that most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert and recently tested on simulated DM haloes. We model the cleaned-up kinematic samples using solutions of the Jeans equation with constant mass-to-light ratio (M/L) and velocity anisotropy parameter. We show that even for such a strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and M/L of the dwarf with accuracy typically better than 25 per cent and almost exactly in the case when the line of sight is perpendicular to the tidal tails. The analysis was applied to the new data for the Fornax dSph galaxy. We show that after careful removal of interlopers the velocity dispersion profile of Fornax can be reproduced by a model in which mass traces light with a M/L of 11 solar units and isotropic orbits. We demonstrate that most of the contamination in the kinematic sample of Fornax probably originates from the Milky Way. [source]


IC 1370: A merger candidate at the periphery of a z , 0.05 cluster,

ASTRONOMISCHE NACHRICHTEN, Issue 9-10 2009
S. Temporin
Abstract Recent studies show evidence of galaxy pre-processing within groups and/or filaments before infall in galaxy clusters. We present VIMOS/IFU observations of IC1370, a galaxy that shows morphological signatures of a recent merger and is located at a projected distance of ,1.2 Mpc to the center of the cluster II Zw108 at z , 0.05. This galaxy shows two opposite tidal tails, a boxy bulge with a de Vaucouleurs light profile, and a disk component that contributes ,50 % of the total luminosity. We investigate the history of the galaxy by applying the spectral synthesis technique to the integral field observations and combining the resulting information with morphological and photometric parameters. The same observations allow us to investigate a background (z , 0.09) compact group of 6 galaxies, ofwhich IC 1370 was initially thought to be the central, brightest member (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]