Home About us Contact | |||
Thrust Sheets (thrust + sheet)
Selected AbstractsSyntectonic infiltration by meteoric waters along the Sevier thrust front, southwest MontanaGEOFLUIDS (ELECTRONIC), Issue 4 2006A. C. RYGEL Abstract Structural, petrographic, and isotopic data for calcite veins and carbonate host-rocks from the Sevier thrust front of SW Montana record syntectonic infiltration by H2O-rich fluids with meteoric oxygen isotope compositions. Multiple generations of calcite veins record protracted fluid flow associated with regional Cretaceous contraction and subsequent Eocene extension. Vein mineralization occurred during single and multiple mineralization events, at times under elevated fluid pressures. Low salinity (Tm = ,0.6°C to +3.6°C, as NaCl equivalent salinities) and low temperature (estimated 50,80°C for Cretaceous veins, 60,80°C for Eocene veins) fluids interacted with wall-rock carbonates at shallow depths (3,4 km in the Cretaceous, 2,3 km in the Eocene) during deformation. Shear and extensional veins of all ages show significant intra- and inter-vein variation in ,18O and ,13C. Carbonate host-rocks have a mean ,18OV-SMOW value of +22.2 ± 3, (1,), and both the Cretaceous veins and Eocene veins have ,18O ranging from values similar to those of the host-rocks to as low as +5 to +6,. The variation in vein ,13CV-PDB of ,1 to approximately +6, is attributed to original stratigraphic variation and C isotope exchange with hydrocarbons. Using the estimated temperature ranges for vein formation, fluid (as H2O) ,18O calculated from Cretaceous vein compositions for the Tendoy and Four Eyes Canyon thrust sheets are ,18.5 to ,12.5,. For the Eocene veins within the Four Eyes Canyon thrust sheet, calculated H2O ,18O values are ,16.3 to ,13.5,. Fluid,rock exchange was localized along fractures and was likely coincident with hydrocarbon migration. Paleotemperature determinations and stable isotope data for veins are consistent with the infiltration of the foreland thrust sheets by meteoric waters, throughout both Sevier orogenesis and subsequent orogenic collapse. The cessation of the Sevier orogeny was coincident with an evolving paleogeographic landscape associated with the retreat of the Western Interior Seaway and the emergence of the thrust front and foreland basin. Meteoric waters penetrated the foreland carbonate thrust sheets of the Sevier orogeny utilizing an evolving mesoscopic fracture network, which was kinematically related to regional thrust structures. The uncertainty in the temperature estimates for the Cretaceous and Eocene vein formation prevents a more detailed assessment of the temporal evolution in meteoric water ,18O related to changing paleogeography. Meteoric water-influenced ,18O values calculated here for Cretaceous to Eocene vein-forming fluids are similar to those previously proposed for surface waters in the Eocene, and those observed for modern-day precipitation, in this part of the Idaho-Montana thrust belt. [source] Palaeomagnetic study of the El Quemado complex and Marifil formation, Patagonian Jurassic igneous province, ArgentinaGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2003Maria P. Iglesia Llanos SUMMARY The upper Jurassic El Quemado Complex was sampled at 36 sites from five localities in the cordilleran foothills of southern Patagonia between Lago Argentino and Lago Posadas,Sierra Colorada, and the middle Jurassic Marifil Formation at 12 sites in the Somuncurá Massif near Camarones. The main lithology was ignimbrite, with minor tuff and lava. Petrographical and SEM observation show that the El Quemado rocks suffered an intense, high-temperature alteration which resulted in transformation of most primary Ti-magnetite in pseudobrookite, rutile and minor Ti-haematite and Fe hydrated oxides. A similar, less pronounced alteration occurred in the Marifil rocks. 40Ar/39Ar dating of El Quemado was possible for one sample from Sierra Colorada and yielded an age of 156.5 ± 1.9 Ma. Magnetic mineralogy measurements (isothermal remanence, hysteresis loop, Curie balance) show that the remanent magnetization is dominated by PSD low-Ti magnetite, often associated to a minor high-coercive mineral (haematite). Secondary magnetization components are usually absent or weak at El Quemado sites, strong at Marifil. They were completely erased by thermal and AF demagnetization and a characteristic remanence (ChRM) stable up to temperatures higher than 550°C or peak-field values of 100 mT was successfully isolated. The virtual geomagnetic pole (VGP) from the Marifil Formation (83°S, 138°E) is in agreement with the literature data for Jurassic rocks from stable South America. The El Quemado VGPs fall in two groups. The localities to the north of latitude 48°S (Lago Posadas, Sierra Colorada) yield a VGP (81°S, 172°E) close to that of Marifil, whereas those south of latitude 49°S (Lago San Martín, Lago Argentino) show a highly elongated VGP distribution consistent with counter-clockwise block-rotation about vertical axes. These rotations were likely caused by thrust sheets which were rotating counter-clockwise at the same time they were advancing towards the foreland. The amount of rotation varies according to the location of the sampling sites in the thrust and fold belt. [source] P,T conditions of decompression of the Limpopo high-grade terrane: record from shear zonesJOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2001C. A. Smit Abstract The Southern Marginal Zone of the late Archean Limpopo Belt of southern Africa is an example of a high-grade gneiss terrane in which both upper and lower crustal deformational processes can be studied. This marginal zone consists of large thrust sheets of complexly folded low-strain gneisses, bound by an imbricate system of kilometre-wide deep crustal shear zones characterized by the presence of high-strain gneisses (,primary straight gneisses'). These shear zones developed during the decompression stage of this high-grade terrane. Low- and high-strain gneisses both contain similar reaction textures that formed under different kinematic conditions during decompression. Evidence for the early M1/D1 metamorphic phase (> 2690 Ma) is rarely preserved in low-strain gneisses as a uniform orientation of relict Al-rich orthopyroxene in the matrix and quartz and plagioclase inclusions in the cores of early (M1) Mg-rich garnet porphyroblasts. This rare fabric formed at >,820 °C and >,7.5 kbar. The retrograde M2/D2 metamorphic fabric (2630,2670 Ma) is well developed in high-strain gneisses from deep crustal shear zones and is microscopically recognized by the presence of reaction textures that formed synkinematically during shear deformation: M2 sigmoid-shaped reaction textures with oriented cordierite,orthopyroxene symplectites formed after the early M1 Mg-rich garnet porphyroblasts, and syn-decompression M2 pencil-shaped garnet with oriented inclusions of sillimanite and quartz formed after cordierite under conditions of near-isobaric cooling at 750,630 °C and 6,5 kbar. The symplectites and pencil-shaped garnet are oriented parallel to the shear fabric and in the stretching direction. Low-strain gneisses from thrust sheets show similar M2 decompression cooling and near-isobaric cooling reaction textures that formed within the same P,T range, but under low-strain conditions, as shown by their pseudo-idioblastic shapes that reflect the contours of completely replaced M1 garnet and randomly oriented cordierite,orthopyroxene symplectites. The presence of similar reaction textures reflecting low-strain conditions in gneisses from thrust sheets and high-strain conditions in primary straight gneisses suggests that most of the strain during decompression was partitioned into the bounding shear zones. A younger M3/D3 mylonitic fabric (< 2637 Ma) in unhydrated mylonites is characterized by brittle deformation of garnet porphyroclasts and ductile deformation of the quartz,plagioclase,biotite matrix developed at <,600 °C, as the result of post-decompression shearing under epidote,amphibolite facies conditions. [source] THE EVOLUTION OF A MODEL TRAP IN THE CENTRAL APENNINES, ITALY: FRACTURE PATTERNS, FAULT REACTIVATION AND DEVELOPMENT OF CATACLASTIC ROCKS IN CARBONATES AT THE NARNI ANTICLINEJOURNAL OF PETROLEUM GEOLOGY, Issue 2 2001F. Storti Recent hydrocarbon discoveries in the Southern Apennines of Italy have focussed attention on the importance of studying fracturing and cataclasis in carbonate rocks because of their fundamental impact on reservoir permeability and connectivity. The Narni Anticline in the central Apennines consists of a stack of easterly-verging carbonate thrust sheets compartmentalized by extensional and strike-slip fault zones. The structure provides afield analogue for studying the evolution of superimposed fold- and fault-related fractures in carbonate reservoir rocks. The fracture pattern at the Narni Anticline developed as a result of three mechanisms: (a) layer-parallel shortening predating folding and faulting; (b) thrust-related folding and further thrust breakthrough; and (c) extensional and strike-slip faulting. Along-strike (longitudinal) fractures developed during progressive rollover fault-propagation folding, and their intensity depends on the precise structural position within the fold: fracture intensity is high in the forelimb and low in the crest. The 3-D architecture of the mechanical anisotropy associated with thrusting, folding, and related fracturing constrained the location and geometry of subsequent extensional and strike-slip faulting. The superimposition in damage zones of a fault-related cleavage on the pre-existing fracture pattern, which is associated with layer-parallel shortening and thrust-related folding, resulted in rock fragmentation and comminution, and the development of cataclastic bands. The evolution of fracturing in the Narni Anticline, its role in constraining thrust breakthrough trajectories and the location of extensional and strike-slip faults, and the final development of low-permeability cataclastic bands, will be relevant to studies of known oilfields in the Southern Apennines, as well as for future exploration. [source] Miocene to Recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, western NepalBASIN RESEARCH, Issue 4 2006Matthias Bernet ABSTRACT Fission-track (FT) analysis of detrital zircon from synorogenic sediment is a well-established tool to examine the cooling and exhumation history of convergent mountain belts, but has so far not been used to determine the long-term evolution of the central Himalaya. This study presents FT analysis of detrital zircon from 22 sandstone and modern sediment samples that were collected along three stratigraphic sections within the Miocene to Pliocene Siwalik Group, and from modern rivers, in western and central Nepal. The results provide evidence for widespread cooling in the Nepalese Himalaya at about 16.0±1.4 Ma, and continuous exhumation at a rate of about 1.4±0.2 km Myr,1 thereafter. The ,16 Ma cooling is likely related to a combination of tectonic and erosional activity, including movement on the Main Central thrust and Southern Tibetan Detachment system, as well as emplacement of the Ramgarh thrust on Lesser Himalayan sedimentary and meta-sedimentary units. The continuous exhumation signal following the ,16 Ma cooling event is seen in connection with ongoing tectonic uplift, river incision and erosion of lower Lesser Himalayan rocks exposed below the MCT and Higher Himalayan rocks in the hanging wall of the MCT, controlled by orographic precipitation and crustal extrusion. Provenance analysis, to distinguish between Higher Himalayan and Lesser Himalayan zircon sources, is based on double dating of individual zircons with the FT and U/Pb methods. Zircons with pre-Himalayan FT cooling ages may be derived from either nonmetamorphic parts of the Tethyan sedimentary succession or Higher Himalayan protolith that formerly covered the Dadeldhura and Ramgarh thrust sheets, but that have been removed by erosion. Both the Higher and Lesser Himalaya appear to be sources for the zircons that record either ,16 Ma cooling or the continuous exhumation afterwards. [source] Formation of submarginal and proglacial end moraines: implications of ice-flow mechanism during the 1963,64 surge of Brúarjökull, IcelandBOREAS, Issue 3 2009ÍVAR ÖRN BENEDIKTSSON The morphology, sedimentology and architecture of an end moraine formed by a ,9 km surge of Brúarjökull in 1963,64 are described and related to ice-marginal conditions at surge termination. Field observations and accurate mapping using digital elevation models and high-resolution aerial photographs recorded at surge termination and after the surge show that commonly the surge end moraine was positioned underneath the glacier snout by the termination of the surge. Ground-penetrating radar profiles and sedimentological data reveal 4,5 m thick deformed sediments consisting of a top layer of till overlying gravel and fine-grained sediments, and structural geological investigations show that the end moraine is dominated by thrust sheets. A sequential model explaining the formation of submarginal end moraines is proposed. The hydraulic conductivity of the bed had a major influence on the subglacial drainage efficiency and associated porewater pressure at the end of the surge, thereby affecting the rates of subglacial deformation. High porewater pressure in the till decreased its shear strength and raised its strain rate, while low porewater pressure in the underlying gravel had the opposite effect, such that the gravel deformed more slowly than the till. The principal velocity component was therefore located within the till, allowing the glacier to override the gravel thrust sheets that constitute the end moraine. The model suggests that the processes responsible for the formation of submarginal end moraines are different from those operating during the formation of proglacial end moraines. [source] |