Thrombospondin Motifs (thrombospondin + motif)

Distribution by Scientific Domains


Selected Abstracts


Interleukin-4 antagonizes oncostatin M and transforming growth factor beta-induced responses in articular chondrocytes

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008
Mohammed El Mabrouk
Abstract Oncostatin M (OSM) stimulates cartilage degradation in rheumatoid arthritis (RA) by inducing matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS; a disintegrin and metalloproteinase with thrombospondin motif). Transforming growth factor beta (TGF-,1) induces cartilage repair in joints but in excessive amounts, promotes inflammation. OSM and TGF-,1 also induce tissue inhibitor of metalloproteinase-3 (TIMP-3), an important natural inhibitor of MMPs, aggrecanases, and tumor necrosis factor alpha converting enzyme (TACE), the principal proteases involved in arthritic inflammation and cartilage degradation. We studied cartilage protective mechanisms of the antiinflammatory cytokine, interleukin-4 (IL-4). IL-4 strongly (MMP-13 and TIMP-3) or minimally (ADAMTS-4) suppressed OSM-induced gene expression in chondrocytes. IL-4 did not affect OSM-stimulated phosphorylation of extracellular signal-regulated kinases (ERKs), protein 38 (p38), c-Jun N-terminal kinase (JNK) and Stat1. Lack of additional suppression with their inhibitors suggested that MMP-13, ADAMTS-4, and TIMP-3 inhibition was independent of these mediators. IL-4 also downregulated TGF-,1-induced TIMP-3 gene expression, Smad2, and JNK phosphorylation. Additional suppression of TIMP-3 RNA by JNK inhibitor suggests JNK implication. The cartilage protective effects of IL-4 in animal models of arthritis may be due to its inhibition of MMPs and ADAMTS-4 expression. However, suppression of TIMP-3 suggests caution for using IL-4 as a cartilage protective therapy. J. Cell. Biochem. 103: 588,597, 2008. © 2007 Wiley-Liss, Inc. [source]


Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases

PATHOLOGY INTERNATIONAL, Issue 7 2010
Takayuki Shiomi
Cellular functions within tissues are strictly regulated by the tissue microenvironment which comprises extracellular matrix and extracellular matrix-deposited factors such as growth factors, cytokines and chemokines. These molecules are metabolized by matrix metalloproteinases (MMP), a disintegrin and metalloproteinases (ADAM) and ADAM with thrombospondin motifs (ADAMTS), which are members of the metzincin superfamily. They function in various pathological conditions of both neoplastic and non-neoplastic diseases by digesting different substrates under the control of tissue inhibitors of metalloproteinases (TIMP) and reversion-inducing, cysteine-rich protein with Kazal motifs (RECK). In neoplastic diseases MMP play a central role in cancer cell invasion and metastases, and ADAM are also important to cancer cell proliferation and progression through the metabolism of growth factors and their receptors. Numerous papers have described the involvement of these metalloproteinases in non-neoplastic diseases in nearly every organ. In contrast to the numerous review articles on their roles in cancer cell proliferation and progression, there are very few articles discussing non-neoplastic diseases. This review therefore will focus on the properties of MMP, ADAM and ADAMTS and their implications for non-neoplastic diseases of the cardiovascular system, respiratory system, central nervous system, digestive system, renal system, wound healing and infection, and joints and muscular system. [source]


Expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic cartilage

PATHOLOGY INTERNATIONAL, Issue 11 2007
Satoko Naito
A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)1, 4, 5, 8, 9 and 15, members of the ADAMTS gene family, have the ability to degrade a major cartilage proteoglycan, aggrecan, at the specific sites, and thus are called ,aggrecanases'. The expression of these ADAMTS species was examined in human osteoarthritic articular cartilage on reverse transcription,polymerase chain reaction. The results demonstrated the predominant expression of ADAMTS4 in osteoarthritic cartilage, while ADAMTS5 was constitutively expressed in osteoarthritic and normal cartilage. ADAMTS9 was expressed mainly in normal cartilage, whereas no or negligible expression of ADAMTS1, 8 and 15 was observed in either osteoarthritic or normal cartilage. In situ hybridization for ADAMTS4 indicated that chondrocytes in osteoarthritic cartilage expressed the mRNA. Two monoclonal antibodies to ADAMTS4 were developed, and immunolocalized ADAMTS4 to chondrocytes in the proteoglycan-depleted zones of osteoarthritic cartilage, showing a direct correlation with the Mankin scores. Immunoblotting indicated a major protein band of 58 kDa in the chondrocyte culture media and osteoarthritic cartilage tissue homogenates. These data demonstrate that among the six ADAMTS species, ADAMTS4 is mainly expressed in an active form in osteoarthritic cartilage, and suggest that ADAMTS4 may play an important role in the degradation of aggrecan in human osteoarthritic cartilage. [source]


Effects of Alendronate on A Disintegrin and Metalloproteinase with Thrombospondin Motifs Expression in the Developing Epiphyseal Cartilage in Rats

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2009
M. S. Kim
Summary A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) have been reported to play a role in the degradation of aggrecan, a major component of cartilage. This study was performed to examine the effects of alendronate on the expression of ADAMTS in developing femoral epiphyseal cartilage. Primary cultured chondrocytes from this cartilage were treated with alendronate in vitro and postnatal day 1 rats were injected subcutaneously with alendronate (1 mg/kg) every second day in vivo. The number of cultured chondrocytes and their aggrecan mRNA levels were unaffected by the alendronate treatment at 10,6 to 10,4 m concentrations. The mRNA levels of ADAMTS-1, -2 and -9 in chondrocytes were also unaffected. However, the levels of ADAMTS-5 and -4 were reduced significantly by the same treatment. The thickness of the proliferating chondrocyte layers and the aggrecan mRNA levels in the epiphysis were unaffected by the alendronate treatment in vivo. However, the hypertrophied chondrocyte layers became significantly thicker, and the size of the secondary ossification centre was reduced significantly by the same treatment (P < 0.05). Both ADAMTS-4 and -5 mRNA expressions were also reduced significantly in vivo. The immunoreactivity against ADAMTS-4 was seen in hypertrophied chondrocytes and reduced significantly by the alendronate treatment. These results suggested that alendronate can inhibit the degradation of aggrecan in the articular cartilage by downregulating the expression of matrix enzymes such as ADAMTS-4 and -5. [source]


Granulin-epithelin precursor binds directly to ADAMTS-7 and ADAMTS-12 and inhibits their degradation of cartilage oligomeric matrix protein

ARTHRITIS & RHEUMATISM, Issue 7 2010
Fengjin Guo
Objective To determine 1) whether a protein interaction network exists between granulin-epithelin precursor (GEP), ADAMTS-7/ADAMTS-12, and cartilage oligomeric matrix protein (COMP); 2) whether GEP interferes with the interactions between ADAMTS-7/ADAMTS-12 metalloproteinases and COMP substrate, including the cleavage of COMP; 3) whether GEP affects tumor necrosis factor , (TNF,),mediated induction of ADAMTS-7/ADAMTS-12 expression and COMP degradation; and 4) whether GEP levels are altered during the progression of arthritis. Methods Yeast two-hybrid, in vitro glutathione S-transferase pull-down, and coimmunoprecipitation assays were used to 1) examine the interactions between GEP, ADAMTS-7/ADAMTS-12, and COMP, and 2) map the binding sites required for the interactions between GEP and ADAMTS-7/ADAMTS-12. Immunofluorescence cell staining was performed to visualize the subcellular localization of GEP and ADAMTS-7/ADAMTS-12. An in vitro digestion assay was employed to determine whether GEP inhibits ADAMTS-7/ADAMTS-12,mediated digestion of COMP. The role of GEP in inhibiting TNF,-induced ADAMTS-7/ADAMTS-12 expression and COMP degradation in cartilage explants was also analyzed. Results GEP bound directly to ADAMTS-7 and ADAMTS-12 in vitro and in chondrocytes, and the 4 C-terminal thrombospondin motifs of ADAMTS-7/ADAMTS-12 and each granulin unit of GEP mediated their interactions. Additionally, GEP colocalized with ADAMTS-7 and ADAMTS-12 on the cell surface of chondrocytes. More importantly, GEP inhibited COMP degradation by ADAMTS-7/ADAMTS-12 in a dose-dependent manner through 1) competitive inhibition through direct protein,protein interactions with ADAMTS-7/ADAMTS-12 and COMP, and 2) inhibition of TNF,-induced ADAMTS-7/ADAMTS-12 expression. Furthermore, GEP levels were significantly elevated in patients with either osteoarthritis or rheumatoid arthritis. Conclusion Our observations demonstrate a novel protein,protein interaction network between GEP, ADAMTS-7/ADAMTS-12, and COMP. Furthermore, GEP is a novel specific inhibitor of ADAMTS-7/ADAMTS-12,mediated COMP degradation and may play a significant role in preventing the destruction of joint cartilage in arthritis. [source]


ADAMs in cancer cell proliferation and progression

CANCER SCIENCE, Issue 5 2007
Satsuki Mochizuki
A disintegrin and metalloproteinases (ADAMs) are a new gene family of proteins with sequence similarity to the reprolysin family of snake venomases that share the metalloproteinase domain with matrix metalloproteinases (MMPs). They are structurally classified into two groups: the membrane-anchored ADAM and ADAM with thrombospondin motifs (ADAMTS). These molecules are involved in various biological events such as cell adhesion, cell fusion, cell migration, membrane protein shedding and proteolysis. Studies on the biochemical characteristics and biological functions of ADAMs are in progress, and accumulated lines of evidence have shown that some ADAMs are expressed in malignant tumors and participate in the pathology of cancers. The activities of ADAMs are regulated by gene expression, intracytoplasmic and pericellular regulation, activation of the zymogens and inhibition of activities by inhibitors. Many ADAM species, including ADAM8, ADAM9, ADAM10, ADAM12, ADAM15, ADAM17, ADAM19, ADAM28, ADAMTS1, ADAMTS4 and ADAMTS5, are expressed in human malignant tumors. Many of them are involved in the regulation of growth factor activities and integrin functions, leading to promotion of cell growth and invasion, although the precise mechanisms of these are not clear at the present time. In this article, we review recent information about ADAM family members and their implications for cancer cell proliferation and progression. (Cancer Sci 2007; 98: 621,628) [source]