Three-dimensional Microstructures (three-dimensional + microstructure)

Distribution by Scientific Domains


Selected Abstracts


Towards a methodology for the characterization of fire resistive materials with respect to thermal performance models,

FIRE AND MATERIALS, Issue 4 2006
Dale P. Bentz
Abstract A methodology is proposed for the characterization of fire resistive materials with respect to thermal performance models. Typically in these models, materials are characterized by their densities, heat capacities, thermal conductivities, and any enthalpies (of reaction or phase changes). For true performance modelling, these thermophysical properties need to be determined as a function of temperature for a wide temperature range from room temperature to over 1000°C. Here, a combined experimental/theoretical/modelling approach is proposed for providing these critical input parameters. Particularly, the relationship between the three-dimensional microstructure of the fire resistive materials and their thermal conductivities is highlighted. Published in 2005 by John Wiley & Sons, Ltd. [source]


Drawing Lithography: Three-Dimensional Fabrication of an Ultrahigh-Aspect-Ratio Microneedle

ADVANCED MATERIALS, Issue 4 2010
Kwang Lee
Drawing lithography is a novel fabrication technique in which a thermosetting polymer is directly drawn from a two-dimensional solid surface without the need for a mask and light irradiation (see figure). Drawing lithography differs from traditional lithography techniques, such as photolithography, in that it is based on the inherently planar geometries of a two-dimensional substrate in a three-dimensional microstructure. [source]


Pattern Formation of Silver Nanoparticles in 1-, 2-, and 3D Microstructures Fabricated by a Photo- and Thermal Reduction Method

ADVANCED FUNCTIONAL MATERIALS, Issue 14 2010
Jong-Jin Park
Abstract One-, two-, and three-dimensional microstructures with dispersed silver nanoparticles are fabricated by a combination of photopatterning and thermal treatment from a silver salt containing photosensitive epoxy resin. Ultraviolet photo-irradiation and subsequent thermal treatment are combined to control the rate of silver salt reduction, the size and the arrangement of nanoparticles, as well as the reticulation of the epoxy resin. This approach allows the creation of high resolution 1-, 2-, and 3D patterns containing silver nanoparticles, with a homogeneous distribution of nanoparticles regardless of the irradiated area. [source]


A random field model for generating synthetic microstructures of functionally graded materials

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 7 2008
Sharif Rahman
Abstract This article presents a new level-cut, inhomogeneous, filtered Poisson random field model for representing two-phase microstructures of statistically inhomogeneous, functionally graded materials with fully penetrable embedded particles. The model involves an inhomogeneous, filtered Poisson random field comprising a sum of deterministic kernel functions that are scaled by random variables and a cut of the filtered Poisson field above a specified level. The resulting level-cut field depends on the Poisson intensity, level, kernel functions, random scaling variables, and random rotation matrices. A reconstruction algorithm including model calibration and Monte Carlo simulation is presented for generating samples of two-phase microstructures of statistically inhomogeneous media. Numerical examples demonstrate that the model developed is capable of producing a wide variety of two- and three-dimensional microstructures of functionally graded composites containing particles of various sizes, shapes, densities, gradations, and orientations. An example involving finite element analyses of random microstructures, leading to statistics of effective properties of functionally graded composites, illustrates the usefulness of the proposed model. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Micro-fabrication and monitoring of three-dimensional microstructures based on laser-induced thermoplastic formation

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 10 2009
Leyan Wang
Abstract This article reports a novel laser-induced micro-fabrication method and its monitoring system for three-dimensional (3D) microstructures. The mechanism of the method is that a small zone of thermoplastic material melted by laser heating grows in liquid surrounding environment, solidifying into a convex microstructure, such as micro-dot or micro-pillar. A laser diode (808 nm) with maximum power output of 130 mW is used as power source, and a kind of paraffin mixed with stearic acid and paint serves as the thermoplastic material for 3D microstructure formation experiments. A light microscope system consisting of a charge-coupled device (CCD) and a computer is utilized to realize real-time observation of the micro-fabricating process. The distribution of local temperature rise on material surface created by laser irradiation is simulated. The effects of liquid environment on microstructure formation have been theoretically analyzed and experimentally studied. Experiments are further carried out to investigate the relationship between laser spot and fabricated microstructures. The results indicate that the widths of micro-dots or micro-pillars are mostly determined by the size of focal spot, and their heights increase with the enlargement of laser power density. With this method, a micro-dot array of Chinese characters meaning "China" has been successfully fabricated through computer programming. This method has the advantages of implementing direct, mask-less, real-time and inexpensive 3D microstructure fabrication. Therefore, it would be widely applied in the fields of micro/nano-technology for practical fabrication of different kinds of 3D microstructures. Microsc. Res. Tech., 2009. © 2009 Wiley-Liss, Inc. [source]