Thioredoxin-like Domain (thioredoxin-like + domain)

Distribution by Scientific Domains


Selected Abstracts


An evolutionarily conserved gene required for proper microtubule architecture in Caenorhabditis elegans

GENES TO CELLS, Issue 2 2004
Satoshi Ogawa
Microtubules are involved in many cellular events during the cell cycle and also in a variety of early embryonic developmental processes. Their architecture and properties change dramatically during the cell cycle and are properly regulated. However, these regulatory mechanisms have not been fully elucidated. C05D11.3 gene of Caenorhabditis elegans encodes a low molecular weight protein that is evolutionarily conserved from yeasts to mammals. A mouse homolog of the C05D11.3 product, APACD (ATP binding protein associated with cell differentiation), contains a thioredoxin-like domain and P-loop, and is present in both the nucleus and the cytoplasm, showing often localization to centrosomes and midbody. In C. elegans, C05D11.3 is expressed throughout development with higher levels of expression in most cells of the nervous system and in vulva. C05D11.3 RNAi-treated embryos show apparent defects in pronuclear migration or nuclear-centrosome rotation, and exhibit little astral microtubules and defective small spindles. These results indicate that C05D11.3, an evolutionarily conserved gene, is essential for proper microtubule organization and function in C. elegans. This gene family may be a conserved regulator of microtubule dynamics and function. [source]


Structure of the thioredoxin-like domain of yeast glutaredoxin 3

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 9 2008
Lydia M. Gibson
Yeast glutaredoxin 3 (Grx3) is a cytosolic protein that regulates the activity of the iron-responsive transcriptional activator Aft1. This member of the monothiol glutaredoxin family contains a thioredoxin-like domain and a glutaredoxin-like domain, which both possess a monothiol active site. The crystal structure of the thioredoxin-like domain has been determined at 1.5,Å resolution and represents the first published structure of this domain for the monothiol glutaredoxin family. The loop containing the signature motif WAxxC is partially disordered, indicating a greater degree of flexibility in this region compared with classical dithiol thioredoxins with a WCGPC active-site motif. [source]


Solution structure of the bb, domains of human protein disulfide isomerase

FEBS JOURNAL, Issue 5 2009
Alexey Y. Denisov
Protein disulfide isomerase is the most abundant and best studied of the disulfide isomerases that catalyze disulfide bond formation in the endoplasmic reticulum, yet the specifics of how it binds substrate have been elusive. Protein disulfide isomerase is composed of four thioredoxin-like domains (abb,a,). Cross-linking studies with radiolabeled peptides and unfolded proteins have shown that it binds incompletely folded proteins primarily via its third domain, b,. Here, we determined the solution structure of the second and third domains of human protein disulfide isomerase (b and b,, respectively) by triple-resonance NMR spectroscopy and molecular modeling. NMR titrations identified a large hydrophobic surface within the b, domain that binds unfolded ribonuclease A and the peptides mastoparan and somatostatin. Protein disulfide isomerase-catalyzed refolding of reduced ribonuclease A in vitro was inhibited by these peptides at concentrations equal to their affinity to the bb, fragment. Our findings provide a structural basis for previous kinetic and cross-linking studies which have shown that protein disulfide isomerase exhibits a saturable, substrate-binding site. [source]


Protein disulfide isomerase family proteins involved in soybean protein biogenesis

FEBS JOURNAL, Issue 3 2007
Hiroyuki Wadahama
Protein disulfide isomerase family proteins are known to play important roles in the folding of nascent polypeptides and the formation of disulfide bonds in the endoplasmic reticulum. In this study, we cloned two similar protein disulfide isomerase family genes from soybean leaf (Glycine max L. Merrill cv. Jack) mRNA by RT-PCR using forward and reverse primers designed from the expressed sequence tag clone sequences. The cDNA encodes a protein of either 364 or 362 amino acids, named GmPDIS-1 or GmPDIS-2, respectively. The nucleotide and amino acid sequence identities of GmPDIS-1 and GmPDIS-2 were 68% and 74%, respectively. Both proteins lack the C-terminal, endoplasmic reticulum-retrieval signal, KDEL. Recombinant proteins of both GmPDIS-1 and GmPDIS-2 were expressed in Escherichia coli as soluble folded proteins that showed both an oxidative refolding activity of denatured ribonuclease A and a chaperone activity. Their domain structures were identified as containing two thioredoxin-like domains, a and a,, and an ERp29c domain by peptide mapping with either trypsin or V8 protease. In cotyledon cells, both proteins were shown to distribute to the endoplasmic reticulum and protein storage vacuoles by confocal microscopy. Data from coimmunoprecipitation and crosslinking experiments suggested that GmPDIS-1 associates with proglycinin, a precursor of the seed storage protein glycinin, in the cotyledon. Levels of GmPDIS-1, but not of GmPDIS-2, were increased in cotyledons, where glycinin accumulates during seed development. GmPDIS-1, but not GmPDIS-2, was induced under endoplasmic reticulum-stress conditions. [source]