Thin Wall (thin + wall)

Distribution by Scientific Domains


Selected Abstracts


Near-Net Shape ,-Si4Al2O2N6 Parts by Hydrolysis Induced Aqueous Gelcasting Process

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 1 2009
Ibram Ganesh
In this paper, a new net-shaping process, an hydrolysis-induced aqueous gelcasting (GC) (GCHAS) has been reported for consolidation of ,-Si4Al2O2N6 ceramics from aqueous slurries containing 48,50 vol%,-Si3N4, ,-Al2O3, AlN, and Y2O3 powders mixture. Dense ceramics of same composition were also consolidated by aqueous GC and hydrolysis assisted solidification routes. Among three techniques used, the GCHAS process was found to be superior for fabricating defect-free thin wall ,-Si4Al2O2N6 crucibles and tubes. Before use, the as purchased AlN powder was passivated against hydrolysis. The sintered ,-Si4Al2O2N6 ceramics exhibited comparable properties with those reported for similar materials in the literature. [source]


Anode-Supported Tubular Micro-Solid Oxide Fuel Cell

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 2 2007
Partho Sarkar
A tubular anode-supported "micro-solid oxide fuel cell" (,SOFC) has been developed for producing high volumetric power density (VPD) SOFC systems featuring rapid turn on/off capability. An electrophoretic deposition (EPD)-based, facile manufacturing process is being refined to produce the anode support, anode functional and electrolyte layers of a single cell. ,SOFCs (diameter <5 mm) have two main potential advantages, a substantial increase in the electrolyte surface area per unit volume of a stack and also rapid start-up. As fuel cell power is directly proportional to the active electrolyte surface area, a ,SOFC stack can substantially increase the VPD of an SOFC device. A decrease in tube diameter allows for a reduction in wall thickness without any degradation of a cell's mechanical properties. Owing to its thin wall, a ,SOFC has an extremely high thermal shock resistance and low thermal mass. These two characteristics are fundamental in reducing start-up and turn-off time for the SOFC stack. Traditionally, SOFC has not been considered for portable applications due to its high thermal mass and low thermal shock resistance (start-up time in hours), but with ,SOFCs' potential for rapid start-up, new possibilities for portable and transportable applications open up. [source]


Morphological Investigation of Carotid Body and Its Arteries in Rabbits

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 5 2002
E. Unur
Summary The purpose of this study was to determine the morphology of the rabbit carotid body and its artery at the light microscopy level. The carotid body was situated between the internal and external carotid arteries after the bifurcation point of the common carotid artery. The carotid body was usually found to be a single, ovoid tissue mass but, in some cases it consisted of two or three parts. More carotid bodies were supplied by a single carotid body artery (glomic artery) which arose from the common carotid artery or the internal or external carotid arteries near the bifurcation point of the common carotid artery. In only one case were there two arteries which arose from opposite sides of the external carotid artery at its origin. There was a distinguishable sinus (glomic sinus) at the origin of the glomic artery. This artery had a thin wall with elastic laminae in the sinus area which become thinner distal to the sinus. [source]


Dramatic Morphology Control in the Fabrication of Porous Polymer Films,

ADVANCED FUNCTIONAL MATERIALS, Issue 22 2008
Luke A. Connal
Abstract Highly ordered, porous honeycomb films are prepared by the breath-figure (BF) technique using dendron-functionalized star polymers as precursors. By changing the nature of the dendritic end groups, dramatically different porous morphologies can be produced. Three series of star polymers are prepared with both the size of the 2,2-bis(methoxy)propionic acid (bis-MPA)-based dendron end group and the dendron functionality being varied. Star polymers end-functionalized with acetonide-protected dendrons (generations 1 to 4) are initially prepared and the acetonide groups subsequently deprotected to yield hydroxyl-functionalized star polymers. Modification of these hydroxyl groups with pentadecafluorooctanoyl chloride yields a third series of functionalized star polymers. The resulting star polymers have surface groups with very different polarity and by utilizing these star polymers to form honeycomb films by the BF technique, the morphology produced is dramatically different. The star polymers with amphiphilic character afford interconnected porous morphologies with multiple layers of pores. The star polymers with pentadecafluorooctanoyl end groups show highly ordered monolayers of pores with extremely thin walls and represent a new porous morphology that has previously not been reported. The ability to prepare libraries of different dendronized star polymers has given further insights into the BF technique and allows the final porous morphology to be controllably tuned utilizing the functional chain ends and generation number of the dendronized star polymers. [source]


Numerical approximation of the heat transfer between domains separated by thin walls

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2006
Ramon Codina
Abstract In this paper, we analyse the numerical approximation of the heat transfer problem between two subdomains that we will consider filled with a fluid and separated by a thin solid wall. First of all, we state the problem in the whole domain with discontinuous physical properties. As an alternative and under certain assumptions on the separating walls, a classical Robin boundary condition between the fluid domains is obtained, thus eliminating the solid wall, and according to which the heat flux is proportional to the temperature difference between the two subdomains. Apart from discussing the relation between both approaches, we consider their numerical approximation, considering different alternatives for the first case, that is, the case in which temperatures are also computed in the solid wall. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Diversity in conducting cells in early land plants and comparisons with extant bryophytes

BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2003
D. EDWARDS
Anatomical screening using scanning electron microscopy (SEM) of short lengths of smooth coalified axes (mesofossils) from a Lochkovian (Lower Devonian) locality in the Welsh Borderland, Shropshire has revealed extensive diversity in the architecture of centrally aggregated, elongate cells. At least 14 types have been discovered, each distinguished by variation in wall architecture and combination of the cells in the central strand. End walls have not been seen. These elongate cells may have smooth, uniformly thick or thin walls, walls with smooth projections either traversing or lining the lumen, or bilayered walls, the innermost perforated by pores of plasmodesmata dimensions. The latter type may be further divided on presence or absence of projections which may line the lumen, but usually cross it and are highly disorganized. Indeed, none of the cells shows the regularity associated with the secondary thickenings of tracheids, but the imperforate/pitted forms with projections superficially resemble the S-type tracheids of the Rhyniopsida in basic construction. Simply pitted types show greater similarity with the water-conducting cells (WCCs) of liverworts and Takakia. To facilitate direct comparison with bryophyte conducting elements, SEM studies were undertaken on the WCCs of a number of mosses and liverworts and on the leptoids of mosses, in conjunction with a range of degradation experiments designed to assess the fossilization potential of these cells. With the exception of polytrichaceous hydroids, the latter demonstrated the resilience of hydroids and leptoids to the chemical treatments. In addition, dehydration of the leptoids produced globular residues similar to those seen in some of the fossils. This combination of techniques raises the possibility that food-conducting cells might well be preserved in coalified fossils, and hence extends the interpretation of the functions of the elongate cells. Broadly speaking, imperforate bilayered examples may have been involved in water conduction, cells with globular residues with or without pitting involved in metabolite movement, and smooth walled examples with or without projections involved in support. The wider affinities of the plants which produced the axes remain equivocal and in the absence of sporangia it is impossible to assign them to a genus. However, this anatomical diversity in vegetative remains of extreme simplicity demonstrates far greater diversity in early land vegetation than is apparent from perusal of species lists. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 297,347. [source]