Thin Slices (thin + slice)

Distribution by Scientific Domains


Selected Abstracts


Hydrothermal and mechanical stresses degrade fiber,matrix interfacial bond strength in dental fiber-reinforced composites

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2006
Serge Bouillaguet
Abstract Fiber-reinforced composites (FRCs) show great promise as long-term restorative materials in dentistry and medicine. Recent evidence indicates that these materials degrade in vivo, but the mechanisms are unclear. The objective of this study was to investigate mechanisms of deterioration of glass fiber,polymer matrix bond strengths in dental fiber-reinforced composites during hydrothermal and mechanical aging. Conventional three-point bending tests on dental FRCs were used to assess flexural strengths and moduli. Micro push-out tests were used to measure glass fiber,polymer matrix bond strengths, and nanoindentation tests were used to determine the modulus of elasticity of fiber and polymer matrix phases separately. Bar-shaped specimens of FRCs (EverStick, StickTech, and Vectris Pontic, Ivoclar-Vivadent) were either stored at room temperature, in water (37 and 100°C) or subjected to ageing (106 cycles, load: 49 N), then tested by three-point bending. Thin slices were prepared for micro push-out and nanoindentation tests. The ultimate flexural strengths of both FRCs were significantly reduced after aging (p < 0.05). Both water storage and mechanical loading reduced the interfacial bond strengths of glass fibers to polymer matrices. Nanoindentation tests revealed a slight reduction in the elastic modulus of the EverStick and Vectris Pontic polymer matrix after water storage. Mechanical properties of FRC materials degrade primarily by a loss of interfacial bond strength between the glass and resin phases. This degradation is detectable by micro push-out and nanoindentation methods. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]


Functional imaging with FENSI: Flow-enhanced signal intensity

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2007
Bradley P. Sutton
Abstract Flow measurement methods for functional MRI (fMRI) are desirable as they are more closely tied to neuronal activity than the commonly used blood oxygenation techniques. In this work we introduce a flow-based functional imaging method. The method, called flow enhancement of signal intensity (FENSI), is an extension of the diffusion enhancement of signal and resolution (DESIRE) method from MR microscopy. The FENSI method offers a localized flow-weighted signal across a very thin slice (0.4 mm in this study) that provides a signal enhancement that is dependent on the velocity and direction of the flow. The FENSI method was implemented on a human 3 T system and applied to a blocked visual cognitive task. Activation maps showed good localization and the measured signal changes of around 10% were in good agreement with the predicted enhancements. Magn Reson Med 58:396,401, 2007. © 2007 Wiley-Liss, Inc. [source]


Imaging of cochlear tissue with a grating interferometer and hard X-rays

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 12 2009
Claus-Peter Richter
Abstract This article addresses an important current development in medical and biological imaging: the possibility of imaging soft tissue at resolutions in the micron range using hard X-rays. Challenging environments, including the cochlea, require the imaging of soft tissue structure surrounded by bone. We demonstrate that cochlear soft tissue structures can be imaged with hard X-ray phase contrast. Furthermore, we show that only a thin slice of the tissue is required to introduce a large phase shift. It is likely that the phase contrast image of the soft tissue structures is sufficient to image the structures even if surrounded by bone. For the present set of experiments, structures with low-absorption contrast have been visualized using in-line phase contrast imaging and a grating interferometer. The experiments have been performed at the Advanced Photon Source at Argonne National Laboratories, a third generation source of synchrotron radiation. The source provides highly coherent X-ray radiation with high-photon flux (>1012 photons/s) at high-photon energies (5,70 keV). Radiographic and light microscopy images of the gerbil cochlear slice samples were compared. It has been determined that a 20-,m thick tissue slice induces a phase shift between 1/3, and 2/3,. Microsc. Res. Tech., 2009. © 2009 Wiley-Liss, Inc. [source]


Riluzole inhibits the persistent sodium current in mammalian CNS neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2000
Andrea Urbani
Abstract The effects of 0.1,100 ,m riluzole, a neuroprotective agent with anticonvulsant properties, were studied on neurons from rat brain cortex. Patch-clamp whole-cell recordings in voltage-clamp mode were performed on thin slices to examine the effects of the drug on a noninactivating (persistent) Na+ current (INa,p). INa,p was selected because it enhances neuronal excitability near firing threshold, which makes it a potential target for anticonvulsant drugs. When added to the external solution, riluzole dose-dependently inhibited INa,p up to a complete blocking of the current (EC50 2 ,m), showing a significant effect at therapeutic drug concentrations. A comparative dose-effect study was carried out in the same cells for the other main known action of riluzole, the inhibitory effect on the fast transient sodium current. This effect was confirmed in our experiments, but we found that it was achieved at levels much higher than putative therapeutic concentrations. Only the effect on INa,p, and not that on fast sodium current, can account for the reduction in neuronal excitability observed in cortical neurons following riluzole treatment at therapeutic concentrations, and this might represent a novel mechanism accounting for the anticonvulsant and neuroprotective properties of riluzole. [source]


Improved understanding of velocity,saturation relationships using 4D computer-tomography acoustic measurements

GEOPHYSICAL PROSPECTING, Issue 2 2005
K. Monsen
ABSTRACT A recently developed laboratory method allows for simultaneous imaging of fluid distribution and measurements of acoustic-wave velocities during flooding experiments. Using a specially developed acoustic sample holder that combines high pressure capacity with good transparency for X-rays, it becomes possible to investigate relationships between velocity and fluid saturation at reservoir stress levels. High-resolution 3D images can be constructed from thin slices of cross-sectional computer-tomography scans (CT scans) covering the entire rock-core volume, and from imaging the distribution of fluid at different saturation levels. The X-ray imaging clearly adds a new dimension to rock-physics measurements; it can be used in the explanation of variations in measured velocities from core-scale heterogeneities. Computer tomography gives a detailed visualization of density regimes in reservoir rocks within a core. This allows an examination of the interior of core samples, revealing inhomogeneities, porosity and fluid distribution. This mapping will not only lead to an explanation of acoustic-velocity measurements; it may also contribute to an increased understanding of the fluid-flow process and gas/liquid mixing mechanisms in rock. Immiscible and miscible flow in core plugs can be mapped simultaneously with acoustic measurements. The effects of core heterogeneity and experimentally introduced effects can be separated, to clarify the validity of measured velocity relationships. [source]


IN VITRO SOMATIC EMBRYOGENESIS AND REGENERATION OF SOMATIC EMBRYOS FROM PIGMENTED CALLUS OF KAPPAPHYCUS ALVAREZII (DOTY) DOTY (RHODOPHYTA, GIGARTINALES),

JOURNAL OF PHYCOLOGY, Issue 3 2003
C. R. K. Reddy
In vitro somatic embryogenesis and regeneration of somatic embryos to whole plants through micropropagules was successfully demonstrated from pigmented uniseriate filamentous callus of Kappaphycus alvarezii (Doty) Doty in axenic cultures. More than 80% of the explants cultured on 1.5% (w/v) agar-solidified Provasoli enriched seawater (PES) medium showed callus development. The callus induction rate was consistently higher for laboratory-adapted plants. The excised callus grew well in subcultures and maintained its growth for prolonged periods if transferred to fresh medium in regular intervals. Some subcultured calli (<10%) did undergo transformation and produced densely pigmented spherical or oval-shaped micropropagules (1,5 mm in diameter) that subsequently developed into young plantlets in liquid PES medium. The micropropagule production was further improved through somatic embryogenesis by a novel method of culturing thin slices of pigmented callus with naphthaleneacetic acid (NAA) or a mixture of NAA and 6-benzylaminopurine. Transfer of embryogenic callus along with tiny somatic embryos to liquid medium and swirling on orbital shaker facilitated rapid growth and morphogenesis of somatic embryos into micropropagules that grew into whole plants in subsequent cultivation in the sea. The daily growth rate of one tissue cultured plant was monitored for seven generations in field and found to be as high as 1.5,1.8 times over farmed plants. The prolific somatic embryogenesis together with high germination potential of somatic embryos observed in this study offers a promising tool for rapid and mass clonal production of seed stock of Kappaphycus for commercial farming. [source]


Imaging of uranium on rat brain sections using laser ablation inductively coupled plasma mass spectrometry: a new tool for the study of critical substructures affined to heavy metals in tissues

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 18 2008
J. Sabine Becker
The specific toxicity of trace metals and compounds largely depends on their bioavailability in different organs or compartments of the organism considered. Imaging mass spectrometry (IMS) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with a spatial resolution in the 100,µm range was developed and employed to study heavy metal distribution in brain tissues for toxicological screening. Rat brain post-mortem tissues were stained in an aqueous solution of either uranium or neodymium (metal concentration 100,µg,g,1) for 3,h. The incubation of heavy metal in thin slices of brain tissue is followed by an imaging mass spectrometric LA-ICP-MS technique. Stained rat brain tissue (thickness 30,µm) were scanned with a focused laser beam (wavelength 266,nm, diameter of laser crater 100,µm and laser power density 3,×,109,W,cm,2). The ion intensities of 235U+, 238U+, 145Nd+ and 146Nd+ were measured by LA-ICP-MS within the ablated area. For quantification purposes, matrix-matched laboratory standards were prepared by dosing each analyte to the pieces of homogenized brain tissue. Imaging LA-ICP-MS allows structures of interest to be identified and the relevant dose range to be estimated. Copyright © 2008 John Wiley & Sons, Ltd. [source]