Thick Layers (thick + layer)

Distribution by Scientific Domains


Selected Abstracts


Ultrastructural changes in feline dental pulp with periodontal disease

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 5 2003
Jamileh Ghoddusi
Abstract A light and transmission electron microscopic study was conducted on dental pulp on cats suffering periodontal disease. After extraction, pulp tissues were fixed and embedded in Epon-Araldite. Thick layers of predentin (50 ,m) and odontoblasts (30 ,m) were observed. In thin sections, odontoblasts showed many mitochondria and secretary vesicles. Some capillaries with several fenestrations were located within the odontoblastic layer. All the sections of pulp examined displayed a generalized infiltration of chronic inflammatory cells. Fibroblasts displayed lytic changes in some areas. These findings imply that the pulp is significantly affected by periodontal disease and furcation-involved teeth should be a carefully considered factor when dental treatment is planned. Microsc. Res. Tech. 61:423,427, 2003. © 2003 Wiley-Liss, Inc. [source]


Lazy Solid Texture Synthesis

COMPUTER GRAPHICS FORUM, Issue 4 2008
Yue Dong
Abstract Existing solid texture synthesis algorithms generate a full volume of color content from a set of 2D example images. We introduce a new algorithm with the unique ability to restrict synthesis to a subset of the voxels, while enforcing spatial determinism. This is especially useful when texturing objects, since only a thick layer around the surface needs to be synthesized. A major difficulty lies in reducing the dependency chain of neighborhood matching, so that each voxel only depends on a small number of other voxels. Our key idea is to synthesize a volume from a set of pre-computed 3D candidates, each being a triple of interleaved 2D neighborhoods. We present an efficient algorithm to carefully select in a pre-process only those candidates forming consistent triples. This significantly reduces the search space during subsequent synthesis. The result is a new parallel, spatially deterministic solid texture synthesis algorithm which runs efficiently on the GPU. Our approach generates high resolution solid textures on surfaces within seconds. Memory usage and synthesis time only depend on the output textured surface area. The GPU implementation of our method rapidly synthesizes new textures for the surfaces appearing when interactively breaking or cutting objects. [source]


Upper Pleistocene-Holocene geomorphic changes dictating sedimentation rates and historical land use in the valley system of the Chifeng region, Inner Mongolia, northern China

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2010
Y. Avni
Abstract This study focuses on the late Quaternary landscape evolution in the Chifeng region of Inner Mongolia, China, its relations to the history of the Pleistocene-Holocene loess accumulation, erosion and redeposition, and their impact on human occupation. Based on 57 optically stimulated luminescence (OSL) ages of loess sediments, fluvial sand and floodplain deposits accumulated on the hill slopes and floodplains, we conclude that during most of the Pleistocene period the region was blanketed by a thick layer of aeolian loess, as well as by alluvial and fluvial deposits. The loess section is divided into two main units that are separated by unconformity. The OSL ages at the top of the lower reddish loess unit yielded an approximate age of 193,ka, roughly corresponding to the transition from MIS 7 to 6, though they could be older. The upper gray loess unit accumulated during the upper Pleistocene glacial phase (MIS 4,3) at a mean accumulation rate of 0·22,m/ka. Parallel to the loess accumulation on top of the hilly topography, active fans were operating during MIS 4,2 at the outlet of large gullies surrounding the major valley at a mean accumulation rate of 0·24,m/ka. This co-accumulation indicates that gullies have been a long-term geomorphic feature at the margins of the Gobi Desert since at least the middle Pleistocene. During the Holocene, the erosion of the Pleistocene loess on the hills led to the burial of the valley floors by the redeposited sediments at a rate that decreases from 3·2,m/ka near the hills to 1,0·4,m/ka1 in the central part of the Chifeng Valley. This rapid accumulation and the frequent shifts of the courses of the river prevented the construction of permanent settlements in the valley floors, a situation which changed only with improved man-made control of the local rivers from the tenth century AD. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Effect of water storage time and composite cement thickness on fatigue of a glass-ceramic trilayer system

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008
Nelson R. F. A. Silva
Abstract Aim. Static Hertzian contact tests of monolayer glass-ceramics in trilayer configurations (glass-ceramic/cement/composite) have shown that thick cement layers lower strength. This study sought to test the hypothesis that thick resin cement layers lower mouth motion fatigue reliability for flat glass-ceramic/cement/composite trilayer systems and that aging in water reduces reliability. Methods. Dicor plates (n , 12 per group) (10 × 10 × 0.8 mm3) were aluminum-oxide abraded (50 ,m), etched (60 s), silanized, and bonded (Rely X ARC) to water aged (30 days) Z100 resin blocks (10 × 10 × 4 mm3). Four groups were prepared: (1) thick cement layer (>100 ,m) stored in water for 24,48 h, (2) thick cement layer stored for 60 days, (3) thin cement layer (,100 ,m) stored for 24,48 h, and (4) thin cement layer stored for 60 days. The layered structures were fatigued (2 Hz) utilizing mouth motion loading with a step-stress acceleration method. A master Weibull distribution was calculated and reliability determined (with 90% confidence intervals) at a given number of cycles and load. Results. The aged group (60 d) with thick cement layer had statistically lower reliability for 20,000 cycles at 150 N peak load (0.11) compared with both nonaged groups (24,48 h) (thin layer = 0.90 and thick layer = 0.82) and aged group with thin cement layer (0.89). Conclusion. Trilayer specimens with thick cement layers exhibited significantly lower reliability under fatigue testing only when stored for 60 days in water. The hypothesis was accepted. These results suggest that diffusion of water into the resin cement and also to the glass-ceramic interface is delayed in the thick cement specimens at 24,48 h. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2008 [source]


Microtensile Bond Strength of Luting Materials to Coronal and Root Dentin

JOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, Issue 3 2005
RICARDO WALTER DDS
ABSTRACT Purpose:: The purpose of this study was to evaluate the microtensile bond strength (,TBS) of two dual-cured resin cements and a glass ionomer cement to coronal dentin versus root dentin. Materials and Methods: RelyX Unicem (3M ESPE, St. Paul, MN, USA) and Panavia F (Kuraray Medical Inc., Tokyo, Japan) were the resin cements used and FujiCEM (GC Corp., Tokyo, Japan) was the glass ionomer cement used. Once separated, the labial coronal and root surfaces of six bovine incisors were ground with 600-grit SiC papers to expose middle dentin. Then, the dentin surfaces were treated following the manufacturers'instructions and a 1 mm thick layer of each material was applied to the flattened coronal and root surfaces. Each material was cured following the manufacturers'recommendations and a composite buildup was made over the cured luting materials for testing purposes. After 24 hours in water at 37°C, the teeth were sectioned into 1 mm × 1 mm × 6 mm beams and tested for ,TBS. The data were analyzed by one- and two-way analysis of variance and Fisher's Protected Least Squares Differences test (p < .05). Results: The ,TBSs to coronal and root dentin were similar within each cement. Comparing the materials, RelyX Unicem presented the highest ,TBS, followed by Panavia F and FujiCEM, respectively (p < .0001). Conclusions: Although there were differences in ,TBS among the materials tested, no significant differences were found between bond strengths to coronal and root substrates. [source]


Effect of Compromised Cortical Bone on Implant Load Distribution

JOURNAL OF PROSTHODONTICS, Issue 8 2008
vanç Akça DDS
Abstract Purpose: To investigate photoelastically the difference in load distribution of dental implants with different implant neck designs in intact and compromised bone. Materials and Methods: Composite photoelastic models were fabricated using two different resins to simulate trabecular bone and a 1-mm thick layer of cortical bone. The following parallel-sided, threaded implants were centrally located in individual models representing intact and compromised cortical bone: Straumann (4.1-mm diameter × 12-mm length), AstraTech (4.0-mm diameter × 13-mm length), and 3i (3.75-mm diameter × 13-mm length). The compromised cortical bone condition was simulated by contaminating a 1-mm neck portion with Vaseline to impair the implant,resin interface. Vertical and oblique static loads were applied on the abutments, and the resulting stresses were monitored photoelastically and recorded photograhphically. Results: For the fully intact condition, the highest stresses were observed around the crest and apical region for all implant designs under vertical and inclined loads. There were no appreciable differences in magnitude or distribution between implant types. With compromised cortical bone, for all designs and load directions, higher stresses in the supporting structures were observed. Increased stresses were noted especially at the cortical bone,trabecular bone interface. Somewhat lower stress levels were observed with the 3i implant. Conclusions: The condition of implant,cortical bone contact has considerable influence on stress distribution. A compromised cortical bone condition caused higher level stresses for all implant designs tested. [source]


Laser Raman spectroscopic investigations of biodegradable vehicle of active agents eluting LVM 316 stainless steel cardiovascular stents for in vivo degradation characteristics

JOURNAL OF RAMAN SPECTROSCOPY, Issue 4 2010
S. K. Sudheer
Abstract Laser Raman spectroscopy is an effective tool for the study of biodegradable polymers, which play a vital role in the new developments in coronary implants such as stents. There is much excitement around the potential capabilities of synthetic biodegradable polymers and the effect they will have on the design and function of implanted devices. In the present investigation, heparin-conjugated biodegradable copolymers were evaluated for their durability as drug-eluting stent coatings. Laser Raman spectroscopic studies were carried out and spectra recorded and analyzed of explanted stents coated with different amounts of polymer alone, showing the existence of different levels at different quantities of polymer. The polymer was detected on every stent analyzed. On the stents coated with a thick layer of polymer, a firm layer of polymer still existed on the stent. In contrast, this layer was degraded and spread around on the stents coated with only a thin layer of the polymer. This indicates that the polymers used in the stents in the present investigation exhibit acceptable biodegradability. Such polymers can be used as efficient drug carriers, as these materials show good degradation after the stipulated period. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Uppermost impact fallback layer in the Bosumtwi crater (Ghana): Mineralogy, geochemistry, and comparison with Ivory Coast tektites

METEORITICS & PLANETARY SCIENCE, Issue 4-5 2007
Christian KOEBERL
In one (LB-05) of 16 cores drilled into the lake sediments, the zone between the impact breccias and the post-impact sediments was penetrated, preserving the final, fine-grained impact fallback layer. This ,30 cm thick layer contains in the top 10 cm "accretionary" lapilli, microtektite-like glass spherules, and shocked quartz grains. Glass particles,mostly of splash form less than 1 mm size,make up the bulk of the grains (,70,78% by number) in the coarser size fraction (>125 ,m) of the top of the fallback layer. About one-third of all quartz grains in the uppermost part of the layer are shocked, with planar deformation features (PDFs); almost half of these grains are highly shocked, with 3 or more sets of PDFs. K-feldspar grains also occur and some show shock deformation. The abundance of shocked quartz grains and the average shock level as indicated by the number of sets of PDFs, for both quartz and K-feldspar, decrease with depth into the layer. The well-preserved glass spherules and fragments are chemically rather homogeneous within each particle, and also show relatively small variations between the various particles. On average, the composition of the fallback spherules from core LB-5B is very similar to the composition of Ivory Coast tektites and microtektites, with the exception of CaO contents, which are about 1.5 to 2 times higher in the fallback spherules. This is a rare case in which the uppermost fallback layer and the transition to the post-impact sediments has been preserved in an impact structure; its presence indicates that the impactite sequence at Bosumtwi is complete and that Bosumtwi is a very well-preserved impact crater. [source]


Monitoring the ,- to ,-phase transition in MnAs/GaAs(001) thin films as function of temperature

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 4 2008
B. Gallas
Abstract MnAs layers with a 5 nm thick amorphous GaAs capping layer were grown epitaxially on GaAs(001). Generalized ellipsometric measurements were made on a 45 nm thick layer in the spectral range 1.5,4 eV at temperatures between ,10 °C and 50 °C in steps of 5 °C. By using both the diagonal and off-diagonal elements of the Jones matrix, the in-plane unixial anisotropy of MnAs was determined in terms of the ordinary and extraordinary complex dielectric functions. The measurements at each temperature could be well reproduced by modeling using the optical properties of the two limiting phases ,-MnAs and ,-MnAs determined at ,10 °C and 50 °C, respectively. The best sensitivity to the volume fractions of the two phases was obtained near 2.2 eV by monitoring the generalized ellipsometric parameter ,p for which the variations reached 30°. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The auditory system of last instars in Gryllus bimaculatus DeGeer

PHYSIOLOGICAL ENTOMOLOGY, Issue 1 2009
ERICH M. STAUDACHER
Abstract Aspects of the auditory development of Gryllus bimaculatus are compared with those of other Orthopterans and Mantodea. Auditory receptor cell branching patterns and first-order auditory interneurones of last-instar crickets are morphologically very similar to adult cells; auditory thresholds are 30,45 dB higher in last instars than in adults; the ears of most ultimate nymphs lack directionality; and the tympana of last instars are not set apart clearly from the surrounding cuticle, are still thick, backed by a thick layer of epithelium, and lack microtrichia. Thus, the development of the auditory system from last-instar to adult shows close similarities between G. bimaculatus and Teleogryllus commodus but not to other Orthopteran or Mantid species. This supports the hypothesis that the pattern of post-embryonic development of the auditory system in crickets differs significantly from that in other Orthopterans and in Mantodea. [source]


An Evaluation of Fibrin Tissue Adhesive Concentration and Application Thickness on Skin Graft Survival

THE LARYNGOSCOPE, Issue 11 2000
Kevin M. O'Grady BS
Abstract Objectives To e-amine the effects of fibrinogen concentration and application thickness of fibrin tissue adhesive on skin graft survival. Study Design Prospective controlled study. Methods Ten domestic pigs were included in the study. A 20 , 5-cm area of skin was harvested bilaterally along the flanks of the animals using a Padgett dermatome. The harvested grafts were trimmed into four 4 , 4-cm squares. Donor sites were treated according to group assignment and the non-meshed grafts were placed on the side opposite their initial orientation and secured with staples. Both single- and multiple-donor human fibrin tissue adhesive preparations, with low and high average fibrinogen concentrations of 30 mg/mL and 60 mg/mL, were used. Adhesive preparations were applied in either a thin layer (0.015 mL/cm2) or a thick layer (0.06 mL/cm2) using a spray applicator. A constant thrombin concentration of 10 U/mL was used in the study. No adhesive was used in the control group and grafts were stabilized with staples. No topical dressings were applied to any of the treatment sites. Animals were sacrificed 4 weeks after graft application. Results Based on statistical analysis, thickness of adhesive application had a significant effect on skin graft survival. Percent mean graft survival in the control and thin application groups was found to be 92% and 97.8% respectively; the mean survival rate in the thick application group was 63.1%. Fibrinogen concentration, when evaluated independently within the thin and thick application groups, was found to have no significant effect on graft survival. Conclusion Independent of fibrinogen concentration, a thin layer of fibrin tissue adhesive, when applied between two opposing surfaces, does not interfere with and may support the healing process, whereas a thick layer of adhesive inhibits skin graft healing. [source]


Embryo-maternal Communication during the First Days of Embryonic Life

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2005
S. Kölle
The mechanisms of embryo-maternal communication during the first days of embryonic life are largely unknown. Using the bovine as a model, the aims of our study were to morphologically characterize the interaction between the pre-implantation embryo and the epithelium of the maternal ampulla, isthmus and uterotubal junction by light and scanning electron microscopy. For this purpose, oviducts were removed from cows revealing a functional corpus luteum on day 3 after insemination. These were compared to oviducts removed on day 3 (metestrus) of the estrous cycle. Three days after insemination, the majority of the epithelial cells in the ampulla were secretory cells distinctly protruding into the oviductal lumen. Contrary the ampulla of cows on day 3 of the cycle predominantly revealed ciliated cells in the oviductal epithelium. As shown by Periodic Acid Schiff reaction (PAS) with and without amylase digestion, the secretory cells of the ampulla synthesized merely glycoproteins during metestrus, but large amounts of glycogen during pregnancy. In the isthmus no morphological differences were seen between pregnant and cyclic cows. The most conspicuous finding during pregnancy was seen in the uterotubal junction: Vital cumulus cells embedded in between epithelial cells had developed short cytoplasmic processes intensely contacting the epithelial uterine cells. The embryos obtained ex vivo were regularly covered with a thick layer of homogenous extracellular matrix. Contrary embryos produced in vitro, both with and without coculture with oviductal cells ,revealed a clearly visible zona pellucida with spongy appearance and numerous pores. Our results imply that already during the first days of life there is intense interaction of the pre-implantation embryo and the maternal genital tract part of which may be mediated by cumulus cells. [source]


Effects of tidal flat reclamation on sediment quality and hypoxia in Isahaya Bay

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 6 2006
Yoshikuni Hodoki
Abstract 1.Ariake Bay, which is located in western Japan, has a large tidal range (>6 m) and a vast tidal flat (200 km2). In the early 1990s, the government-managed Isahaya Reclamation Project began in the western part of Ariake Bay. A 16-km2 area of tidal flat in the inner part of Isahaya Bay was destroyed through reclamation and separated from the sea by a dyke, which created land and a freshwater reservoir. 2.Since the initiation of the project, fishery yields around Isahaya Bay have dramatically decreased. The objective of this study was to clarify the relationship between the work associated with the Isahaya Reclamation Project and the recent environmental deterioration in Ariake Bay, with references to present sediment thickness and organic matter content, and hypoxic water distributions in Isahaya Bay. 3.The organic matter load from the reservoir has increased since the initiation of the reclamation project and has been associated with a thick layer of fine sediment at the bottom of Isahaya Bay. The thickness of fine sediment and the total organic carbon content were higher in Isahaya Bay than in the freshwater reservoir. 4.Based on measurements in August 2001, hypoxic water spread widely in and around Isahaya Bay; the lowest dissolved oxygen (DO) concentration (0.53 mg L,1) was observed just outside the dyke. An analysis based on a two-layered box model using data obtained in August 2001 showed that the DO consumption rate in the bottom layer was high (0.61 mg O2 L,1 day,1), and that 22,41% of the total organic carbon load needed to induce the hypoxic water was derived from the reclamation area. 5.Our findings strongly suggest that enclosed seas may suffer from eutrophic and hypoxic conditions because of their low seawater-exchange rate. A comprehensive conservation programme and environmental assessment including physical and material transport processes in the system is needed to manage the environment of the enclosed sea. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Extreme events controlling erosion and sediment transport in a semi-arid sub-andean valley

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 13 2002
R. Coppus
Abstract The importance of extreme events in controlling erosion and sediment transport in semi-arid areas has long been appreciated but in practice being by definition rare and episodic they are difficult to study. When they are observed this is frequently in catchments for which little data are available. Another difficulty is that even when catchments are being monitored the instruments that record discharge, sediment load and hillslope sediment fluxes perform inaccurately or unpredictably during extreme weather conditions. This paper describes slope and channel processes that were actually observed by the authors during a (at least) 1 : 30 year 30 minute event with a rainfall intensity of 240 mm h,1 in a second-order tributary of the Rio Camacho near Tarija in southern Bolivia. During the event, it could be observed how different tributary streams and slope sections contributed sediments and flow to the main channel. Evidence for these contributions did not survive the event, which has implications for both modelling and monitoring. Before the onset of the event open erosion plots were functioning on the slopes where rainfall and runoff were being measured. Rainfall experiments were used to obtain infiltration rates. The storm began with a moderate intensity of about 5 cm per hour but increased after 5 minutes to 30 cm per hour and continued for 30 minutes. At this time, the rainfall intensity greatly exceeded the infiltration capacity and water started draining the steep slopes. The ephemeral channel rapidly filled up with runoff. Erosion by hailstones was considerable. Provisionally, the discharge during peak runoff was estimated at 43·7 m3 s,1 (Manning equation). On the basis of sediment loads carried by previous storms, (average concentration of 21 g l,1) the total suspended load discharge during the storm would have been 15 ton ha,1. Within the ephemeral channel, 10 to 50 cm thick layers of coarse sediments were deposited. The collectors of the open erosion plots could not handle the large amounts of runoff and sediment and were completely filled to overflowing. Comparing these data with soil losses during less intense storms it can be concluded that extreme events largely contribute to erosion and sediment transport and that the majority of the rainstorms play only a minor role. The results also show how limited the values of rainfall experiments are in understanding geomorphic events. This makes modelling of erosion and soil losses a difficult and hazardous task. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Effectiveness of very thin soil layers in chemical release from bed sediment

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 2 2001
Bryan Talbert
The chemical containment effectiveness of both the natural recovery and the "particle broadcasting" processes for remediating contaminated bed-sediments depend upon very thin soil and/or sand layers millimeters in depth. Conventional capping for in situ chemical containment of bed-sediment or dredged material typically involves thick layers of 30 to 90 centimeters in depth. Few studies have been conducted with thin layers of candidate natural materials. A steady-state benzoic acid dissolution test apparatus and procedure, devised to realistically simulate bed-sediment chemo-dynamic conditions, was used to measure chemical flux through thin layers (1 to 8 mm) of soil, sand, and ideal porous media. The thin layers were found to be very effective. Flux reductions ranged from 81 to 96%, with fine sand being slightly better than top soil. Design algorithms developed for the thick layers used in conventional capping design will under predict the flux through very thin layers. Advective flow induced by surface roughness is proposed to explain the higher average measure d-to-predicted flux ratio of 1.67. [source]


Environmental concentrations of methoprene and its transformation products after the treatment of Altosid® XR Briquets in the city of Richmond, British Columbia, Canada

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2010
Jen-ni Kuo
Abstract Water runoff from catch basins treated with Altosid® XR Briquets for mosquito larvae control was sampled at 10 storm drainage pump stations along the outskirts of the city of Richmond, British Columbia, Canada after rainfall events in 2006 to determine the residual concentrations of methoprene and transformation products: citronellic acid, methoprene acid, and 7-methoxycitronellic acid. Runoff of prior-to-treatment, posttreatment, and 150-d-after-treatment was collected. No residues were detected in the prior-to-treatment samples. However, methoprene was detected in posttreatment, and citronellic acid was detected in posttreatment and one 150-d-after-treatment sample. The detected environmental concentrations of methoprene (0.04,0.14,µg/L) and methoprene acid (0.07,µg/L) at pump stations were below known/reported toxicity values to aquatic organisms. However, concentrations detected inside the storm drainage system in catch basins (methoprene 122,µg/L, methoprene acid 1.74,µg/L) and inspection chambers (methoprene 622,µg/L, methoprene acid 20,µg/L, citronellic acid 0.05,µg/L) are known to be toxic to invertebrates, have chronic early-life-stage fish effects, and exceeded the Draft Interim Ontario Water Quality Objective and the numerical benchmarks for protection of amphibians (1.6,µg/L), invertebrates (10,µg/L), and fish (80,µg/L). The limited detection in the present study may have resulted from significant absorption of methoprene to sample bottle walls, substance decay during sample storage before methoprene extraction, flushing of briquettes from catch basins following heavy rainfall, and the burial of briquettes under thick layers of debris. Environ. Toxicol. Chem. 2010;29:2200,2205. © 2010 SETAC [source]


Geochemistry of Extremely Alkaline (pH > 12) Ground Water in Slag-Fill Aquifers

GROUND WATER, Issue 6 2005
George S. Roadcap
Extremely alkaline ground water has been found underneath many shuttered steel mills and slag dumps and has been an impediment to the cleanup and economic redevelopment of these sites because little is known about the geochemistry. A large number of these sites occur in the Lake Calumet region of Chicago, Illinois, where large-scale infilling of the wetlands with steel slag has created an aquifer with pH values as high as 12.8. To understand the geochemistry of the alkaline ground water system, we analyzed samples of ground water and the associated slag and weathering products from four sites. We also considered several potential remediation schemes to lower the pH and toxicity of the water. The principal cause of the alkaline conditions is the weathering of calcium silicates within the slag. The resulting ground water at most of the sites is dominated by Ca2+ and OH, in equilibrium with Ca(OH)2. Where the alkaline ground water discharges in springs, atmospheric CO2 dissolves into the water and thick layers of calcite form. Iron, manganese, and other metals in the metallic portion of the slag have corroded to form more stable low-temperature oxides and sulfides and have not accumulated in large concentrations in the ground water. Calcite precipitated at the springs is rich in a number of heavy metals, suggesting that metals can move through the system as particulate matter. Air sparging appears to be an effective remediation strategy for reducing the toxicity of discharging alkaline water. [source]


Membrane potential and endocytic activity control disintegration of cell,cell adhesion and cell fusion in vinculin-injected MDBK cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004
Riitta Palovuori
Cell fusion occurs during fertilization and in the formation of organs such as muscles, placenta, and bones. We have developed an experimental model for epithelial cell fusion which permits analysis of the processes during junction disintegration and formation of polykaryons (Palovuori and Eskelinen [2000] Eur. J. Cell. Biol. 79: 961,974). In the present work, we analyzed the process in detail. Cell fusion was achieved by microinjecting into the cytoplasm of kidney epithelial Madin-Darby bovine kidney (MDBK) cells TAMRA-tagged vinculin, which incorporated into lateral membranes, focal adhesions and nucleus, and, prior fusion, induced internalization of actin, cadherin and plakoglobin to small clusters in cytoplasm. Injected vinculin was still visible at lateral membranes after removal of junctional proteins indicating that it was tightly associated and perturbed the cell,cell contact sites resulting in membrane fragmentation. Injection of active Rac together with vinculin induced accumulation of cadherin to the membranes, but did not affect vinculin,membrane association. However, it hampered cell fusion probably by supporting adherens junctions. In order to stop endocytosis, we lowered intracellular pH of vinculin-injected cells to 5.5 with the aid of nigericin in KCl buffer. In acidified cells, injected vinculin delineated lateral membranes as thick layers, cadherin remained in situ, and cell fusion was completely inhibited. Since this treatment also leads to cell depolarization, we checked the vinculin incorporation in a KCl solution containing nigericin at neutral pH. In these circumstances, both endogenous and injected vinculin delineated lateral membranes as very thin discontinuous layers, but still fusion was hampered most likely due to perturbation in the initial vinculin,membrane association. We suggest that vinculin might function as a sensor of the environment triggering cell fusion during development in circumstances where membrane potential and local and transient pH gradients play a role. © 2004 Wiley-Liss, Inc. [source]


Atopic xerosis: employment of noninvasive biophysical instrumentation for the functional analyses of the mildly abnormal stratum corneum and for the efficacy assessment of skin care products

JOURNAL OF COSMETIC DERMATOLOGY, Issue 2 2006
Hachiro Tagami MD
Summary The subtle dryness of the skin surrounding the lesions of atopic dermatitis (AD) is called atopic dry skin or atopic xerosis (AX). AX is more susceptible to the development of AD skin lesions under various environmental stimuli than the clinically normal skin of the people who have or have had or will have AD, which might be called normal atopic skin (NAS) that shows no functional differences as compared to the skin of normal individuals. Routine histopathologic studies of AX that involve the invasive procedures of biopsy are not so helpful in clarifying the underlying pathogenesis. Modern, noninvasive biophysical instrumentation provides rich and quantitative information about various functional aspects of skin. The stratum corneum (SC) of AX reveals not only decreased hydration but also mildly impaired barrier function demonstrable as an increase in transepidermal water loss, elevated pH values, and an increased turnover rate of the SC consisting of thick layers of smaller-sized corneocytes. These data suggest that AX is related to mildly increased epidermal proliferation as a result of the presence of subclinical cutaneous inflammation. Although AX skin does not display any impairment in the recovery of barrier function after physical skin irritation by tape-stripping, it produces a much more severe, long-lasting inflammatory response together with a delay in barrier repair after chemical irritation such as that induced by sodium lauryl sulphate. The SC of AX is biochemically characterized by reduction in the amounts of ceramides, especially ceramide I, sebum lipids, and water-soluble amino acids. None of these changes in SC functions are seen in NAS, which includes not only the normal-looking skin of AD patients long after regression of all active lesions but also of latent atopic skin such as neonates who later develop AD. This suggests that all of the observed functional as well as biochemical abnormalities of AX are a reflection of subclinical inflammation. The presence of the underlying inflammation in AX also differentiates it from senile xerosis. The mildly impaired SC functions of AX can be improved by daily repeated applications of effective moisturizers, i.e., corneotherapy, which is effective in preventing the exacerbating progression of AX to AD resulting from inadvertent scratching of the skin that facilitates the penetration of environmental allergens into the skin. The biophysical confirmation of such efficacy of moisturizers, including cosmetic bases on the mildly impaired barrier function and decreased water-holding capacity of the SC of AX, definitely substantiates the importance of skin care for the cosmetic skin problems that affect every individual in the cold and dry season ranging from late autumn to early spring. [source]


DEVELOPMENT OF PROTOPLASTS OF ULVA FASCIATA (CHLOROPHYTA) FOR ALGAL SEED STOCK

JOURNAL OF PHYCOLOGY, Issue 3 2000
Yean-Chang Chen
The aim of this study was to isolate and cultivate protoplasts of the green alga Ulva fasciata Delile and subsequently induce them to form a microthallus suspension for algal seed stock. The protoplasts were covered with secreted mucilage following 6 h of culture when viewed with SEM. The mucilage fused to form thick layers during day 1 of culture. Microfibrillar cell walls were deposited into the thick layers of mucilage on the 5th day of culture. An average of about 10% of the freshly isolated protoplasts began to divide at 6,14 days. These protoplasts subsequently developed varied morphologies, depending on the time of collection during the year. Protoplasts isolated from U. fasciata collected in March to June developed frond thalli or microthalli when they were cultured in low or high densities (cells/area), respectively. The microthallus suspension was cultured for more than two years at 10,40 ,mol·m,2·s,1. Frond thalli formed when the suspension was cultivated at 100,160 ,mol·m,2·s,1. Therefore, microthallus suspension can serve as a seed stock of U. fasciata. [source]


Crack Interactions in Laminar Ceramics That Exhibit a Threshold Strength

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2004
Haksung Moon
Laminar ceramic composites have been fabricated with thin compressive layers, containing a mixture of alumina and mullite, sandwiched between thicker alumina layers. It has previously been shown that a single crack that extends within a thicker alumina layer can be arrested by the compressive layers to produce a threshold strength, i.e., a strength below which the probability of failure is zero. The behavior of multiple cracks within the laminate has been investigated, to observe the mechanisms of crack interaction and measure their influence on the threshold strength. It was found that when the cracks in adjacent thick layers were offset by a distance less than the thickness of two thick layers, the cracks would interact and decrease the threshold strength. The number of interacting cracks, their orientation, and location can also have an effect on the threshold strength. [source]


Energy Transfer from Chemically Attached Rhodamine 101 to Adsorbed Methylene Blue on Microcrystalline Cellulose Particles,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2007
Hernán B. Rodríguez
Rhodamine 101 (R101) was chemically attached onto microcrystalline cellulose and methylene blue (MB) was adsorbed to a sample bearing nearby 6 × 10,7 mol R101 (g cellulose),1. The system was studied by reflectance and emission spectroscopy in the solid state. R101 shows no aggregation in these conditions and, while pure MB builds up dimers on cellulose even at 2 × 10,8 mol g,1, in the presence of R101 no evidence on selfaggregation or heteroaggregation is found up to around 10,6 mol g,1. No exciplex formation is found as well. The overall fluorescence quantum yield measured on thick layers, once re-absorption effects are accounted for, amounts to 0.80 ± 0.07 for pure R101 and decreases steadily on increasing the concentration of MB. Results demonstrate the occurrence of radiative and nonradiative singlet energy transfer from R101 to MB. For thick layers of particles, the combined effect of both kinds of energy transfer amounts to nearly 80% at the highest acceptor concentration, while nonradiative transfer reaches 60% both for thin and optically thick layers. The dependence of nonradiative energy transfer efficiencies on the acceptor concentration is analyzed and the origin of departures from Förster behavior at low acceptor concentration is discussed. [source]


MOVPE growth and characterization of a -plane AlGaN over the entire composition range

PHYSICA STATUS SOLIDI - RAPID RESEARCH LETTERS, Issue 7 2010
Masihhur R. Laskar
Abstract We report the metal organic vapor phase epitaxy (MOVPE) growth and characterization of non-polar (110) a -plane Alx Ga1,xN on (102) r -plane sapphire substrates over the entire composition range. Alx Ga1,xN samples with ,0.8 ,m thick layers and with x = 0, 0.18, 0.38, 0.46, 0.66, and 1.0 have been grown on r -plane sapphire substrates. The layer quality can be improved by using a 3-stage AlN nucleation layer and appropriate V/III ratio switching following nucleation. All a -plane AlGaN epilayers show an anisotropic in-plane mosaicity, strongly influenced by Al incorporation and growth conditions. Careful lattice parameter measurements show anisotropic in-plane strain that results in an orthorhombic distortion of the hexagonal unit cell, making Al composition determination from X-ray diffraction difficult. In general lower Al incorporation is seen in a -plane epilayers compared to c -plane samples grown under the same conditions. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The ansa -zirconocene [bis(,5 -cyclopentadienyl)phenylphosphine]dichloridozirconium(IV)

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 3 2010
Susanne Büschel
In the title compound, [Zr(C16H13P)Cl2], the geometry at the metal atom is distorted tetrahedral; the Cl,Zr,Cl angle is 101.490,(16)° and the cyclopentadienyl (Cp) centroids subtend an angle of 122.63,(3)° at the Zr atom. The P atom lies 0.474,(3) and 0.496,(3),Ĺ out of the planes of the Cp rings. The C,P,C angle of 91.42,(7)° reflects the pincer effect of the two Cp rings. Three C,H...Cl, one C,H...P, one C,H..., and one Cl...P interaction link the molecules to form thick layers parallel to the bc plane. [source]


Three-dimensional seismic characterisation of large-scale sandstone intrusions in the lower Palaeogene of the North Sea: completely injected vs. in situ remobilised sandbodies

BASIN RESEARCH, Issue 4 2010
Ewa Szarawarska
ABSTRACT A large number of km-scale, saucer-shaped sandstone bodies of enigmatic origin have recently been documented in the North Sea and the Faroe Shetland Basin. This study utilises three-dimensional seismic data, calibrated by well data, to examine two such bodies that exhibit very similar saucer-shaped geometries in cross-section. The Volund and Danica structures, located 250 km apart are interpreted as end members of a spectrum of large-scale remobilised and injected sandstones present in the North Sea Palaeogene. Both are characterised by a central 1,2 km-wide low area surrounded by a discordant, 2,300 m tall inclined dyke complex, that tips out into a bedding concordant body interpreted as a shallow-level sill and/or partly extruded sandstone. The origin of the central concordant sandstone body as either injected (laccolith) or depositional is of key importance to a complete understanding of the origin and prospectivity of these structures. The key criteria for recognising an injected vs. depositional origin for the central concordant sandbody are: (1) a flat, nonerosional base; (2) ,jack-up' of the overburden equal to the underlying sand thickness; (3) equally thick layers of encasing mudstones; and (4) paleogeographic context. This study suggests that the Danica structure was deposited as a channel sandstone and remobilised in situ; this led to the formation of wing-like intrusions along the channel margins. In contrast, the Volund structure overburden displays a forced-fold geometry, arguably a diagnostic feature of an intrusive origin. The ability to recognise and differentiate completely injected vs. in situ remobilised sandbodies is important both from a basin analysis, hydrocarbon exploration and rock mechanics points of view. An improved understanding of these aspects will lead to a reduction of risks associated with the exploration and development of such a sandbody and an enhanced understanding of sediment remobilisation and fluid flow on a basin scale. [source]


Painting and Printing Living Bacteria: Engineering Nanoporous Biocatalytic Coatings to Preserve Microbial Viability and Intensify Reactivity

BIOTECHNOLOGY PROGRESS, Issue 1 2007
Michael C. Flickinger
Latex biocatalytic coatings containing ,50% by volume of microorganisms stabilize, concentrate and preserve cell viability on surfaces at ambient temperature. Coatings can be formed on a variety of surfaces, delaminated to generate stand-alone membranes or formulated as reactive inks for piezoelectric deposition of viable microbes. As the latex emulsion dries, cell preservation by partial desiccation occurs simultaneously with the formation of pores and adhesion to the substrate. The result is living cells permanently entrapped, surrounded by nanopores generated by partially coalesced polymer particles. Nanoporosity is essential for preserving microbial viability and coating reactivity. Cryo-SEM methods have been developed to visualize hydrated coating microstructure, confocal microscopy and dispersible coating methods have been developed to quantify the activity of the entrapped cells, and FTIR methods are being developed to determine the structure of vitrified biomolecules within and surrounding the cells in dry coatings. Coating microstructure, stability and reactivity are investigated using small patch or strip coatings where bacteria are concentrated 102 - to 103 -fold in 5,75 ,m thick layers with pores formed by carbohydrate porogens. The carbohydrate porogens also function as osmoprotectants and are postulated to preserve microbial viability by formation of glasses inside the microbes during coat drying; however, the molecular mechanism of cell preservation by latex coatings is not known. Emerging applications include coatings for multistep oxidations, photoreactive coatings, stabilization of hyperthermophiles, environmental biosensors, microbial fuel cells, as reaction zones in microfluidic devices, or as very high intensity (>100 g·L -1 coating volume·h -1) industrial or environmental biocatalysts. We anticipate expanded use of nanoporous adhesive coatings for prokaryotic and eukaryotic cell preservation at ambient temperature and the design of highly reactive "living" paints and inks. [source]