Home About us Contact | |||
Theta Rhythm (theta + rhythm)
Selected AbstractsTheta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memoryHIPPOCAMPUS, Issue 7 2005György Buzsáki Abstract Five key topics have been reverberating in hippocampal-entorhinal cortex (EC) research over the past five decades: episodic and semantic memory, path integration ("dead reckoning") and landmark ("map") navigation, and theta oscillation. We suggest that the systematic relations between single cell discharge and the activity of neuronal ensembles reflected in local field theta oscillations provide a useful insight into the relationship among these terms. In rats trained to run in direction-guided (1-dimensional) tasks, hippocampal cell assemblies discharge sequentially, with different assemblies active on opposite runs, i.e., place cells are unidirectional. Such tasks do not require map representation and are formally identical with learning sequentially occurring items in an episode. Hebbian plasticity, acting within the temporal window of the theta cycle, converts the travel distances into synaptic strengths between the sequentially activated and unidirectionally connected assemblies. In contrast, place representations by hippocampal neurons in 2-dimensional environments are typically omnidirectional, characteristic of a map. Generation of a map requires exploration, essentially a dead reckoning behavior. We suggest that omnidirectional navigation through the same places (junctions) during exploration gives rise to omnidirectional place cells and, consequently, maps free of temporal context. Analogously, multiple crossings of common junction(s) of episodes convert the common junction(s) into context-free or semantic memory. Theta oscillation can hence be conceived as the navigation rhythm through both physical and mnemonic space, facilitating the formation of maps and episodic/semantic memories. © 2005 Wiley-Liss, Inc. [source] Muscarine activates the sodium,calcium exchanger via M3 receptors in basal forebrain neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2006Changqing Xu Abstract Neurons of the medial septum/diagonal band of Broca (MSDB) project to the hippocampus. Muscarinic cholinergic mechanisms within the MSDB are potent modulators of hippocampal functions; intraseptal scopolamine disrupts and intraseptal carbachol facilitates hippocampus-dependent learning and memory tasks, and the associated hippocampal theta rhythm. In earlier work, we demonstrated that, within the MSDB, the septohippocampal GABAergic but not cholinergic neurons are the primary target of muscarinic manipulations and that muscarinic activation of septohippocampal GABAergic neurons is mediated directly via M3 receptors. In the present study, we examined the ionic mechanism(s) underlying the excitatory actions of muscarine in these neurons. Using whole-cell patch-clamp recording techniques in rat brain slices, we demonstrated that M3 receptor-mediated muscarinic activation of MSDB neurons is dependent on external Na+ and is also reduced by bath-applied Ni2+ and KB-R7943 as well as by replacing external Na+ with Li+, suggesting a primary involvement of the Na+,Ca2+ exchanger. We conclude that the M3 receptor-mediated muscarinic activation of MSDB septohippocampal GABA-type neurons, that is important for cognitive functioning, is mediated via activation of the Na+,Ca2+ exchanger. [source] Rat hippocampal theta rhythm during sensory mismatchHIPPOCAMPUS, Issue 4 2009D. Zou Abstract It has been suggested that sensory mismatch induces motion sickness, but its neural mechanisms remain unclear. To investigate this issue, theta waves in the hippocampal formation (HF) were studied during sensory mismatch by backward translocation in awake rats. A monopolar electrode was implanted into the dentate gyrus in the HF, from which local field potentials were recorded. The rats were placed on a treadmill affixed to a motion stage translocated along a figure 8-shaped track. The rats were trained to run forward on the treadmill at the same speed as that of forward translocation of the motion stage (a forward condition) before the experimental (recording) sessions. In the experimental sessions, the rats were initially tested in the forward condition, and then tested in a backward (mismatch) condition, in which the motion stage was turned around by 180° before translocation. That is, the rats were moved backward by translocation of the stage although the rats ran forward on the treadmill. The theta (6,9 Hz) power was significantly increased in the backward condition compared with the forward condition. However, the theta power gradually decreased by repeated testing in the backward condition. Furthermore, backward translocation of the stage without locomotion did not increase theta power. These results suggest that the HF might function as a comparator to detect sensory mismatch, and that alteration in HF theta activity might induce motion sickness. © 2008 Wiley-Liss, Inc. [source] Environmental novelty is signaled by reduction of the hippocampal theta frequencyHIPPOCAMPUS, Issue 4 2008A. Jeewajee Abstract The hippocampal formation (HF) plays a key role in novelty detection, but the mechanisms remain unknown. Novelty detection aids the encoding of new information into memory,a process thought to depend on the HF and to be modulated by the theta rhythm of EEG. We examined EEG recorded in the HF of rats foraging for food within a novel environment, as it became familiar over the next five days, and in two more novel environments unexpectedly experienced in trials interspersed with familiar trials over three further days. We found that environmental novelty produces a sharp reduction in the theta frequency of foraging rats, that this reduction is greater for an unexpected environment than for a completely novel one, and that it slowly disappears with increasing familiarity. These results do not reflect changes in running speed and suggest that the septo-hippocampal system signals unexpected environmental change via a reduction in theta frequency. In addition, they provide evidence in support of a cholinergically mediated mechanism for novelty detection, have important implications for our understanding of oscillatory coding within memory and for the interpretation of event-related potentials, and provide indirect support for the oscillatory interference model of grid cell firing in medial entorhinal cortex. © 2007 Wiley-Liss, Inc. [source] Cholinergic suppression of excitatory synaptic responses in layer II of the medial entorhinal cortexHIPPOCAMPUS, Issue 2 2007Bassam N. Hamam Abstract Theta-frequency (4,12 Hz) electroencephalographic activity is thought to play a role in mechanisms mediating sensory and mnemonic processing in the entorhinal cortex and hippocampus, but the effects of acetylcholine on excitatory synaptic inputs to the entorhinal cortex are not well understood. Field excitatory postsynaptic potentials (fEPSPs) evoked by stimulation of the piriform (olfactory) cortex were recorded in the medial entorhinal cortex during behaviors associated with theta activity (active mobility) and were compared with those recorded during nontheta behaviors (awake immobility and slow wave sleep). Synaptic responses were smaller during behavioral activity than during awake immobility and sleep, and responses recorded during movement were largest during the negative phase of the theta rhythm. Systemic administration of cholinergic agonists reduced the amplitude of fEPSPs, and the muscarinic receptor blocker scopolamine strongly enhanced fEPSPs, suggesting that the theta-related suppression of fEPSPs is mediated in part by cholinergic inputs. The reduction in fEPSPs was investigated using in vitro intracellular recordings of EPSPs in Layer II neurons evoked by stimulation of Layer I afferents. Constant bath application of the muscarinic agonist carbachol depolarized membrane potential and suppressed EPSP amplitude in Layer II neurons. The suppression of EPSPs was not associated with a substantial change in input resistance, and could not be accounted for by a depolarization-induced reduction in driving force on the EPSP. The GABAA receptor-blocker bicuculline (50 ,M) did not prevent the cholinergic suppression of EPSPs, suggesting that the suppression is not dependent on inhibitory mechanisms. Paired-pulse facilitation of field and intracellular EPSPs were enhanced by carbachol, indicating that the suppression is likely due to inhibition of presynaptic glutamate release. These results indicate that, in addition to well known effects on postsynaptic conductances that increase cellular excitability, cholinergic activation in the entorhinal cortex results in a strong reduction in strength of excitatory synaptic inputs from the piriform cortex. © 2006 Wiley-Liss, Inc. [source] Dynamic changes in the direction of the theta rhythmic drive between supramammillary nucleus and the septohippocampal systemHIPPOCAMPUS, Issue 6 2006Bernat Kocsis Abstract Neurons in the supramammillary nucleus (SUM) of urethane-anesthetized rats fire rhythmically in synchrony with hippocampal theta rhythm. As these neurons project to the septum and hippocampus, it is generally assumed that their role is to mediate ascending activation, leading to the hippocampal theta rhythm. However, the connections between SUM and the septohippocampal system are reciprocal; there is strong evidence that theta remains in the hippocampus after SUM lesions and in the SUM after lesioning the medial septum. The present study examines the dynamics of coupling between rhythmic discharge in the SUM and hippocampal field potential oscillations, using the directionality information carried by the two signals. Using directed transfer function analysis, we demonstrate that during sensory-elicited theta rhythm and also during short episodes of theta acceleration of spontaneous oscillations, the spike train of a subpopulation of SUM neurons contains information predicting future variations in rhythmic field potentials in the hippocampus. In contrast, during slow spontaneous theta rhythm, it is the SUM spike signal that can be predicted from the preceding segment of the electrical signal recorded in the hippocampus. These findings indicate that, in the anesthetized rat, SUM neurons effectively drive theta oscillations in the hippocampus during epochs of sensory-elicited theta rhythm and short episodes of theta acceleration, whereas spontaneous slow theta in the SUM is controlled by descending input from the septohippocampal system. Thus, in certain states, rhythmically firing SUM neurons function to accelerate the septal theta oscillator, and in others, they are entrained by a superordinate oscillatory network. © 2006 Wiley-Liss Inc. [source] Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampusHIPPOCAMPUS, Issue 7 2005Andrew P. Maurer Abstract Spatial scaling of place specific activity in the hippocampus varies systematically from the septal pole (high resolution) to the temporal pole (low resolution). Place fields get progressively larger, and the probability of observing a field in a given environment gets progressively smaller. It was previously found that decoupling movement in space from ambulation, by having the animal actively ride on a mobile platform, results in marked enlargement of the spatial scale factor in the dorsal hippocampus and a reduction in the increase in theta rhythm power with running speed, suggesting that a self-motion signal determines the spatial scale at which the hippocampal population vector updates. These results led to the hypothesis that the gain of the self-motion signal may vary systematically along the septo-temporal axis of the hippocampus. To test this hypothesis, EEG theta rhythm and ensembles of CA1 pyramidal cells and interneurons were recorded from the extreme dorsal and middle portions of the hippocampus. Pyramidal cell population vectors representing successive locations became decorrelated over substantially shorter distances in the dorsal than in the middle hippocampus. Dorsal pyramidal cells had smaller place fields, higher mean and peak firing rates, and higher intrinsic oscillation frequencies during track running than that of middle pyramidal cells. Both dorsal pyramidal cells and interneurons had more elevated mean rates during running, compared with rest, than that of the corresponding cell classes in the middle hippocampus, and both cell classes increased their rates more as a function of speed in the dorsal hippocampus. The amplitude, but not the frequency of fissure recorded theta rhythm, increased more as a function of running speed in the dorsal than in the middle hippocampus. We conclude that variation in the neuronal response to movement speed is the likely basis for the systematic variation in spatial scaling along the septo-temporal axis of the hippocampus. © 2005 Wiley-Liss, Inc. [source] A learning rule for place fields in a cortical model: Theta phase precession as a network effectHIPPOCAMPUS, Issue 7 2005Silvia Scarpetta Abstract We show that a model of the hippocampus introduced recently by Scarpetta et al. (2002, Neural Computation 14(10):2371,2396) explains the theta phase precession phenomena. In our model, the theta phase precession comes out as a consequence of the associative-memory-like network dynamics, i.e., the network's ability to imprint and recall oscillatory patterns, coded both by phases and amplitudes of oscillation. The learning rule used to imprint the oscillatory states is a natural generalization of that used for static patterns in the Hopfield model, and is based on the spike-time-dependent synaptic plasticity, experimentally observed. In agreement with experimental findings, the place cells' activity appears at consistently earlier phases of subsequent cycles of the ongoing theta rhythm during a pass through the place field, while the oscillation amplitude of the place cells' firing rate increases as the animal approaches the center of the place field and decreases as the animal leaves the center. The total phase precession of the place cell is lower than 360°, in agreement with experiments. As the animal enters a receptive field, the place cells' activity comes slightly less than 180° after the phase of maximal pyramidal cell population activity, in agreement with the findings of Skaggs et al. (1996, Hippocampus 6:149,172). Our model predicts that the theta phase is much better correlated with location than with time spent in the receptive field. Finally, in agreement with the recent experimental findings of Zugaro et al. (2005, Nature Neuroscience 9(1):67,71), our model predicts that theta phase precession persists after transient intrahippocampal perturbation. © 2005 Wiley-Liss, Inc. [source] Theta reset produces optimal conditions for long-term potentiationHIPPOCAMPUS, Issue 6 2004Holly McCartney Abstract Connections among theta rhythm, long-term potentiation (LTP) and memory in hippocampus are suggested by previous research, but definitive links are yet to be established. We investigated the hypothesis that resetting of local hippocampal theta to relevant stimuli in a working memory task produces optimal conditions for induction of LTP. The timings of the peak and trough of the first wave of reset theta were determined in initial sessions and used to time stimulation (4 pulses, 200 Hz) during subsequent performance. Stimulation on the peak of stimulus-reset theta produced LTP while stimulation on the trough did not. These results suggest that a memory-relevant stimulus produces a phase shift of ongoing theta rhythm that induces optimal conditions for the stimulus to undergo potentiation. © 2004 Wiley-Liss, Inc. [source] Phase precession and phase-locking of hippocampal pyramidal cellsHIPPOCAMPUS, Issue 3 2001Amitabha Bose Abstract We propose that the activity patterns of CA3 hippocampal pyramidal cells in freely running rats can be described as a temporal phenomenon, where the timing of bursts is modulated by the animal's running speed. With this hypothesis, we explain why pyramidal cells fire in specific spatial locations, and how place cells phase-precess with respect to the EEG theta rhythm for rats running on linear tracks. We are also able to explain why wheel cells phase-lock with respect to the theta rhythm for rats running in a wheel. Using biophysically minimal models of neurons, we show how the same network of neurons displays these activity patterns. The different rhythms are the result of inhibition being used in different ways by the system. The inhibition is produced by anatomically and physiologically diverse types of interneurons, whose role in controlling the firing patterns of hippocampal cells we analyze. Each firing pattern is characterized by a different set of functional relationships between network elements. Our analysis suggests a way to understand these functional relationships and transitions between them. Hippocampus 2001;11:204,215. © 2001 Wiley-Liss, Inc. [source] Septal networks: relevance to theta rhythm, epilepsy and Alzheimer's diseaseJOURNAL OF NEUROCHEMISTRY, Issue 3 2006Luis V. Colom Abstract Information processing and storing by brain networks requires a highly coordinated operation of multiple neuronal groups. The function of septal neurons is to modulate the activity of archicortical (e.g. hippocampal) and neocortical circuits. This modulation is necessary for the development and normal occurrence of rhythmical cortical activities that control the processing of sensory information and memory functions. Damage or degeneration of septal neurons results in abnormal information processing in cortical circuits and consequent brain dysfunction. Septal neurons not only provide the optimal levels of excitatory background to cortical structures, but they may also inhibit the occurrence of abnormal excitability states. [source] Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: An EEG/PET study of normal and depressed subjectsPSYCHOPHYSIOLOGY, Issue 6 2003Diego A. Pizzagalli Abstract In rodents, theta rhythm has been linked to the hippocampal formation, as well as other regions, including the anterior cingulate cortex (ACC). To test the role of the ACC in theta rhythm, concurrent measurements of brain electrical activity (EEG) and glucose metabolism (PET) were performed in 29 subjects at baseline. EEG data were analyzed with a source localization technique that enabled voxelwise correlations of EEG and PET data. For theta, but not other bands, the rostral ACC (Brodmann areas 24/32) was the largest cluster with positive correlations between current density and glucose metabolism. Positive correlations were also found in right fronto-temporal regions. In control but not depressed subjects, theta within ACC and prefrontal/orbitofrontal regions was positively correlated. The results reveal a link between theta and cerebral metabolism in the ACC as well as disruption of functional connectivity within frontocingulate pathways in depression. [source] |