Thermoplastics

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Terms modified by Thermoplastics

  • thermoplastic Composite
  • thermoplastic composite
  • thermoplastic elastomer
  • thermoplastic material
  • thermoplastic matrix
  • thermoplastic poly
  • thermoplastic polymer
  • thermoplastic polyurethane
  • thermoplastic starch

  • Selected Abstracts


    Microstructure-properties correlations in dynamically vulcanized nanocomposite thermoplastic elastomers based on PP/EPDM

    POLYMER ENGINEERING & SCIENCE, Issue 3 2007
    Ghasem Naderi
    Thermoplastic vulcanized (TPV) nanocomposites were prepared in a laboratory mixer using EPDM, polypropylene of different viscosities, maleic anhydride modified polypropylene, an organo-clay, and a sulfur-based curing system. Based on the obtained results from X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimeter, and mechanical properties, the microstructure of the prepared nanocomposites was found to be sensitive to the viscosity difference between the two phases and the clay content. X-ray diffraction and TEM images of the TPV nanocomposites showed that clay was nearly exfoliated and randomly distributed into the polypropylene phase. The SEM photomicrographs of the dynamically vulcanized thermoplastic elastomer samples showed that the rubber particles were dispersed through the polypropylene in form of aggregates and their size increased with the introduction of clay. The nanoscale dimensions of the dispersed clay resulted in a significant improvement of the tensile modulus of the TPV nanocomposite samples, from 20 to 90% depending on clay content and the viscosity ratio of PP/EPDM. In the PP nanocomposites, the clay layers act as nucleating agents, resulting in higher crystallization temperature and reduced degree of crystallinity. Moreover, the oxygen permeability in the TPV nanocomposites was found to be lower than in unfilled but otherwise similar materials. POLYM. ENG. SCI., 47:207,217, 2007. © 2007 Society of Plastics Engineers. [source]


    Preparation of carbon nanofibres through electrospinning and thermal treatment,

    POLYMER INTERNATIONAL, Issue 12 2009
    Cheng-Kun Liu
    Abstract Electrospinning is a versatile process to obtain continuous carbon nanofibres at low cost. Thermoplastic and thermosetting polymer precursors are utilized to prepare electrospun carbon nanofibres, activated carbon nanofibres through chemical and/or physical activation and functionalized composite carbon nanofibres by surface coating or electrospinning a precursor solution tailored with nanomaterials. Many promising applications of electrospun carbon nanofibres can be expected if appropriate microstructural, mechanical and electrical properties become available. This article provides an in-depth review of the research activities regarding several varieties and performance requirements of precursor nanofibres, polyacrylonitrile-based carbon nanofibres and their functionalized products, and carbon nanofibres from other precursors. Copyright © 2009 Society of Chemical Industry [source]


    Multiaxial fatigue criterion for a high-density polyethylene thermoplastic

    FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 6 2010
    A. BERREHILI
    ABSTRACT The multiaxial fatigue behaviour of a high-density polyethylene was investigated at room temperature and constant frequency. As a consequence of the mode of failure, an end-of-life criterion for fatigue tests is discussed in the first part of the work, in order to define the number of cycles to failure. Based on force controlled fatigue tests under tension, compression and torsion at two stress ratio, a multiaxial fatigue criterion including the stress-ratio effect is proposed for the fatigue design of this polymer. This criterion is based on the maximum and mean values of the second invariant of the stress tensor. [source]


    Forensic evaluation of clothing flammability

    FIRE AND MATERIALS, Issue 7 2009
    M. M. Hirschler
    Abstract A set of 17 commercial garments were purchased, categorized based on their fabric composition and fire tested. Three fire exposures were used: (a) a simile of the United States regulatory test for apparel fabrics (16CFR1610), (b) a small vertical candle on a small swatch of fabric and (c) a candle applied to a full garment, placed on a mannequin. Comparisons were made between the results of the various tests and of the various fabrics tested. A general correlation was observed whereby increased fabric areal density [weight/unit fabric area] resulted in improved fire performance. Where outliers to this generalization were observed the improved fire performance was due to the superior inherent fire performance of specific fabric types such as silk. Overall, the quantitative behavior with regard to flame spread rate observed after ignition of cellulosic, thermoplastic and blended fabrics was more heavily dependent on fabric areal density than on their chemical composition. Two key conclusions are that very lightweight fabrics constitute a potential danger and that the United States regulatory value, set at 88.3g/m2 (2.6oz/yd2), represents an essentially arbitrary cut-off in this regard. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Survey of small-scale flame spread test results of modern fabrics

    FIRE AND MATERIALS, Issue 6 2007
    Marcelo M. Hirschler
    Abstract The flammability of apparel worn on a person has one of the highest ratios of fire fatalities per fire, and there are few statutory requirements. A series of evaluations was conducted on the flammability of 50 fabrics (both cellulosic and thermoplastic) using the (now withdrawn) NFPA 701 small-scale test. The fabrics covered a broad range of areal densities (weights) and many were not intended for apparel. A series of conclusions were reached. In particular, it is apparent that the following primary correlation exists between fabric weight and flammability: the heavier the fabric the better it behaves in a fire. Secondarily, however, the type of fabric also strongly affects this conclusion. This paper presents the results of the testing and offers an analysis. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Processing of Bulk Metallic Glass

    ADVANCED MATERIALS, Issue 14 2010
    Jan Schroers
    Abstract Bulk metallic glass (BMG) formers are multicomponent alloys that vitrify with remarkable ease during solidification. Technological interest in these materials has been generated by their unique properties, which often surpass those of conventional structural materials. The metastable nature of BMGs, however, has imposed a barrier to broad commercial adoption, particularly where the processing requirements of these alloys conflict with conventional metal processing methods. Research on the crystallization of BMG formers has uncovered novel thermoplastic forming (TPF)-based processing opportunities. Unique among metal processing methods, TPF utilizes the dramatic softening exhibited by a BMG as it approaches its glass-transition temperature and decouples the rapid cooling required to form a glass from the forming step. This article reviews crystallization processes in BMG former and summarizes and compares TPF-based processing methods. Finally, an assessment of scientific and technological advancements required for broader commercial utilization of BMGs will be made. [source]


    Development of sustainable resource-based nanostructured polyaniline/castor oil polyurethane composites

    ADVANCES IN POLYMER TECHNOLOGY, Issue 1 2009
    Sharif Ahmad
    Abstract Processibility is one of the important requirements for the commercial utilization of conducting polymers. Studies on composites and blends based on nano polyaniline (PANI) dispersions have become the subject of scientific curiosity with regard to their morphology, stability, and electron transport properties. In general, polymer nanocomposites are made by dispersing inorganic or organic nanoparticles into either a conventional thermoplastic or thermoset polymer. The present study reports the synthesis of nanostructured MO-PANI and castor oil polyurethane (COPU),based composites. The effect of loading of nanostructured MO-PANI in COPU on the spectral, physicochemical and morphological properties has been analyzed. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 28:26,31, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20143 [source]


    Comparison of volatile emissions and structural changes of melt reprocessed polypropylene resins

    ADVANCES IN POLYMER TECHNOLOGY, Issue 4 2002
    Q. Xiang
    Abstract Polypropylene (PP), as a commodity recyclable thermoplastic, was studied in this research to evaluate the potential environmental impact resulting from volatile organic compounds (VOCs) emitted during multiple melt reprocessing. Unstabilized PP (U-PP) and stabilized PP (S-PP) resins, simulating recycled materials prone to degradation, were evaluated for total VOC emissions generated during multiple melt reprocessing by injection molding and extrusion, respectively. Results show that the maximum amount of total VOCs from each cycle (up to six cycles for extrusion and up to ten for injection molding) did not significantly change, while the cumulative VOCs increased with increasing processing cycle for both materials. A good correlation between cumulative VOC increases and melt flow index increase for the U-PP and weight-average molecular weight Mw decrease for the S-PP were obtained. Reprocessing in all cases was accompanied by decreases in Mw and melt viscosity as a result of thermooxidative degradation. FTIR data considering increases in carbonyl content and degree of unsaturation suggest that at equivalent cycle numbers, degradation appears to be more severe for the extruded material in spite of the longer oxidative induction time of the "as received" pellets used in extrusion. The onset and type of structural changes are shown to depend on cycle number and reprocessing method. © 2002 Wiley Periodicals, Inc. Adv Polym Techn 21: 235,242, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.10027 [source]


    Investigation of the phase morphology of dynamically vulcanized PVC/NBR blends using atomic force microscopy

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010
    S. M. Gheno
    Abstract Dynamic vulcanization is a mixing process employed in the melt state of elastomers with thermoplastics. This process may result in the formation of thermoplastic vulcanized (TPV) materials with improved properties such as mechanical strength, Young's modulus, hardness, and abrasion fatigue. In this study, a vulcanized thermoplastic was obtained by the dynamic vulcanization of poly(vinyl chloride)/acrylonitrile butadiene rubber (PVC/NBR) blends using a curative system based on sulfur (S)/tetramethylthiuram disulfide (TMTD) and mercaptobenzothiazyl disulfide (MBTS). The formation of crosslinks was characterized by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The mechanical properties were analyzed by tensile tests and the phase morphology was investigated using atomic force microscopy (AFM) operating in the tapping mode-AFM. The phase images of the dynamically vulcanized blends showed an elongated morphology, which can be associated to the formation of crosslinks that give the material its excellent mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    Poly(lactic acid)-based biocomposites reinforced with kenaf fibers

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008
    Maurizio Avella
    Abstract Biodegradable thermoplastic-based composites reinforced with kenaf fibers were prepared and characterized. Poly(lactic acid) (PLA) was selected as polymeric matrix. To improve PLA/fibers adhesion, low amount of a proper reactive coupling agent, obtained by grafting maleic anhydride onto PLA, was added during matrix/fibers melt mixing. Compared with uncompatibilized composites, this compatibilization strategy induces a strong interfacial adhesion and a pronounced improvement of the mechanical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Large-scale specimen testing on friction and wear of pure and internally lubricated cast polyamides

    LUBRICATION SCIENCE, Issue 3 2006
    Pieter SamynArticle first published online: 4 JUL 200
    Abstract Due to the casting process for nylons, their composition can easily be modified to cover a wide range of mechanical properties and applications, especially as large wear surfaces in, for example, crane guidances. Presently, selection tests for working conditions up to 40MPa are presented on pure Na-catalysed polyamides, oil-filled polyamides with homogeneous oil dispersions and holes in the surface containing oil lubricant and two types of thermoplastic solid-lubricated polyamides. Pure polyamides are, however, prone to high and unstable sliding at pressures as low as 10MPa with brittle fracture and lumpy transfer. Oil lubrication is not able to remove the sliding instabilities as oil supply to the sliding interface is controlled by migration effects that are restricted by deformation and thermal softening or melting of the polyamide matrix. Although friction and wear are lower and more stable for samples with oil supplied through lubricating holes, additional running-in phenomena are attributed to a relatively thick transfer film that is brittle and easily peels off. A continuous thick molten film or island-like deposition occurs on the polyamide surface. Solid lubricants are able to stabilize friction and lower wear down to the formation of a thin and coherent transfer film. However, increasing the amount of lubricants induces lower mechanical properties and higher deformation of the test samples. The differences in transfer behaviour are discussed with reference to optical microscopy and calculations of bulk and flash temperatures. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Time-Temperature Creep Behaviour of Poly(propylene) and Polar Ethylene Copolymer Blends

    MACROMOLECULAR MATERIALS & ENGINEERING, Issue 2 2007
    Antonietta Genovese
    Abstract Polymers commonly undergo deformation under an applied stress over their lifetime; some deformations are irrecoverable once the source of stress is removed. Therefore an understanding of the response of a polymer can be achieved by investigating the viscoelastic properties using creep experiments, where the behaviour can be monitored under small deformational loads. Poly(propylene) (PP) was blended with a polar elastic, thermoplastic, poly[ethylene- co -(methyl acrylate)] (EMA), to toughen the matrix. EMA formed a dispersed phase in PP that maintained its strength through its crystallinity rather than crosslinking. EMA can form a compatible interface with PP through inclusion of maleated-PP as a compatibiliser. The viscoelasticity of the PP,EMA blends, particularly the creep behaviour is an important factor if the properties of PP are to be maintained. The creep and recovery of PP,EMA blends with varying compositions were investigated under different loads and number of cycles. High EMA content provided an alternative deformation pathway due to its elastomeric properties. The experimental creep behaviour has been evaluated using the 4-element model with some limitations evident in the viscoelastic transitional region. [source]


    Reactive processing of syndiotactic polystyrene with an epoxy/amine solvent system

    MACROMOLECULAR SYMPOSIA, Issue 1 2003
    Jaap Schut
    Abstract Syndiotactic polystyrene (sPS) is a new semi-crystalline thermoplastic which is believed to fill the price-performance gap between engineering and commodity plastics. In order to reduce the high processing temperature of sPS (>290°C), an epoxy-amine model system was used as a reactive solvent. Such a processing aid can be used to achieve a 50 to 500 fold lowering of the melt viscosity. When initially homogeneous solutions of sPS in a stoechiometric epoxy-amine mixture are thermally cured, Reaction Induced Phase Separation (RIPS) takes place, leading to phase separated thermoplastic-thermoset polymer blends. We focus our study on low (wt% sPS < 20%) and high concentration blends (wt% sPS > 60%) prepared by two processing techniques (mechanical stirring in a laboratory reactor or internal mixer/ reactive extrusion respectively). These blends have different potential interests. Low concentration blends (sPS domains in an epoxy-amine matrix) are prepared to create new, tunable blend morphologies by choosing the nature of the phase separation process, i.e. either crystallisation followed by polymerization or polymerization followed crystallisation. High concentration blends (sPS matrix containing dispersed epoxy-amine particles after RIPS) are prepared to facilitate the extrusion of sPS. In this case, the epoxy amine model system served as a reactive solvent. The time to the onset of RIPS is in the order of 7-9 min for low concentration blends, while it increases to 20-45 min for high concentration samples, as the reaction rates are substantially slowed down due to lower epoxy and amine concentrations. During the curing reaction the melting temperature of sPS in the reactive solvent mixture evolves back from a depressed value to the level of pure sPS. This indicates a change in the composition of the sPS phase, caused by (complete) phase separation upon reaction. We conclude that our epoxy amine system is suited for reactive processing of sPS, where final properties depend strongly on composition and processing conditions. [source]


    Dielectric in situ sensor monitoring of phase separation and changes in the state of each phase

    MACROMOLECULAR SYMPOSIA, Issue 1 2003
    D. Kranbuehl
    Abstract Frequency dependent dielectric measurements have been used to monitor and characterize the phase separation process and changes in state of each phase. The measurements are made in situ using a micro planar sensor. They can be made both in the laboratory as well as in an industrial production or use environment. Two examples are presented. The first is monitoring the onset of phase separation, the buildup in Tg and change in composition of each phase during "reactive processing" of a high performance thermoplastic (TP) PPI, thermoset precursors (TS) DGEBA-MCDEA intially homogeneous blend. The second example involves monitoring the stability, onset of phase separation, as a function of temperature on a mineral oil, stearyl alcohol, water, sufactant emulsion used in the cosmetic industry. [source]


    Tensile creep of a long-fibre glass mat thermoplastic (GMT) composite.

    POLYMER COMPOSITES, Issue 9 2009

    In Part I of this article, the short-term tensile creep of a 3-mm-thick continuous long-fibre glass mat thermoplastic composite was characterized and found to be linear viscoelastic up to 20 MPa. Subsequently, a nonlinear viscoelastic model has been developed for stresses up to 60 MPa for relatively short creep durations. The creep response was also compared with the same composite material having twice the thickness for a lower stress range. Here in Part II, the work has been extended to characterize and model longer term creep and recovery in the 3-mm composite for stresses up to near failure. Long-term creep tests consisting of 1-day loading followed by recovery were carried out in the nonlinear viscoelastic stress range of the material, i.e., 20,80 MPa in increments of 10 MPa. The material exhibited tertiary creep at 80 MPa and hence data up-to 70 MPa has been used for model development. It was found that viscoplastic strains of about 10% of the instantaneous strains were developed under load. Hence, a non-linear viscoelastic,viscoplastic constitutive model has been developed to represent the considerable plastic strains for the long-term tests. Findley's model which is the reduced form of the Schapery non-linear viscoelastic model was found to be sufficient to model the viscoelastic behavior. The viscoplastic strains were modeled using the Zapas and Crissman viscoplastic model. A parameter estimation method which isolates the viscoelastic component from the viscoplastic part of the nonlinear model has been developed. The model predictions were found to be in good agreement with the average experimental curves. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]


    Tensile creep of a long-fiber glass mat thermoplastic composite.

    POLYMER COMPOSITES, Issue 8 2009

    This work is part of a larger experimental program aimed at developing a semi-empirical constitutive model for predicting creep in random glass mat thermoplastic (GMT) composites. The tensile creep response of a long-fiber GMT material has been characterized for 3- and 6-mm thick material. Tensile tests showed that the variability within and between plaques are comparable with an overall variability of about 6% and 8% for the 3- and 6-mm thick materials, respectively. The thicker material exhibited slightly higher variability and directional dependence due to greater flow during molding of the plaques. Short-term creep tests consisting of 30 min creep and recovery, respectively, were performed over the stress range between 5 and 60 MPa. Three tests for determining the linear viscoelastic region were considered which showed that the 3- and 6-mm thick GMT are linear viscoelastic up to 20 and 25 MPa respectively. The 6-mm thick GMT consisting of a higher fiber weight fraction was linear over wider stress range. Furthermore, it was found that plastic strains were accumulated during creep, which suggests that a nonlinear viscoelastic,viscoplastic model would be more appropriate for long-term creep at relatively high stresses, which will be presented in our companion paper. The magnitude of the plastic strains developed in the creep tests presented here was lower because a single specimen was loaded at multiple stress level over short durations. Hence, a nonlinear viscoelastic constitutive model has been developed for the two thickness materials. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]


    Improving the properties of LDPE/glass fiber composites with silanized-LDPE

    POLYMER COMPOSITES, Issue 7 2009
    Felipe W. Fabris
    Low density polyethylene (LDPE) is a widely used thermoplastic. The dispersion of inorganic fillers in thermoplastic matrices such as polyethylene has been largely employed to improve some of its properties. However, interaction between both components is a major issue so the presence of a coupling agent is usually necessary to increase the interaction among the phases. In this study, LDPE chemically modified with vinyltriethoxysilane (VTES) was used as a coupling agent in glass fiber-reinforced LDPE. The composites were prepared in a mixing chamber and subsequently analyzed by tensile tests, rotational rheometry, and scanning electron microscopy (SEM). The mechanical properties were significantly increased by the use of small amounts of the coupling agent. Moreover, the rheological behavior and the SEM micrographs showed higher interaction between the matrix and the reinforcing phase in the composites containing LDPE modified with VTES, confirming the suitability of using this coupling agent in these systems. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]


    Swirl mat, and long discontinuous fiber mat,reinforced polypropylene composites,status and future trends

    POLYMER COMPOSITES, Issue 4 2000
    J. Karger-Kocsis
    Polypropylene (PP) composites with glass and natural fiber mat reinforcement (GMT-PP and NMT-PP, respectively) are widely used in different applications, competing with metallic sheets and thermoset polymer composites. Their production occurs via melt impregnation, slurry deposition and various textile architecturing processes that lead to either consolidated or non-consolidated preforms. These preforms are then converted into final parts by hot pressing. The "traditional" GMT-PP composites are nowadays faced with a great challenge because of the introduction of long fiber reinforced thermoplastic (LFT) composites produced on- or off-line. This paper gives a brief survey on the manufacturing, processing, properties and application of GMT and GMT-like systems and it concludes by describing some of the future trends, especially in the fields of material and process developments. [source]


    The effect of hyperbranched polymers on processing and thermal stability of biodegradable polyesters

    POLYMER ENGINEERING & SCIENCE, Issue 3 2009
    Yanir Shaked
    Nanomodification of poly-hydroxy-butyrate (PHB), with hyperbranched polymers (HBP), was studied. Solid-hyperbranched polyesters of different generations were incorporated into a biobased and biodegradable, thermoplastic, polyester. Thermal, rheological, and molecular weight measurements had indicated that due to the interactions between the hydroxyl groups and the polar esters in PHB, the rate of recrystallization was significantly increased. Furthermore, the degree of crystallinity and nonisothermal crystallization temperature were also increased. Molecular weight measurements did not indicate a reduction or retention when HBPs were incorporated. These results are of great significance for the processing of biodegradable polymers and specifically for PHB, where improved processability and enhanced crystallization are of importance. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers [source]


    Preparation and properties of transparent thermoplastic segmented polyurethanes derived from different polyols

    POLYMER ENGINEERING & SCIENCE, Issue 5 2007
    Da-Kong Lee
    Various segmented polyurethanes of different soft segment structure with hard segment content of about 50 wt% were prepared from 4,4,-diphenylmethane diisocyanate (MDI), 1,4-butanediol and different polyols with a Mn of 2000 by a one-shot, hand-cast bulk polymerization method. The polyols used were a poly(tetramethylene ether)glycol, a poly(tetramethylene adipate)glycol, a polycaprolactonediol and two polycarbonatediols. The segmented polyurethanes were characterized by gel permeation chromatography (GPC), UV-visible spectrometry, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction, and their tensile properties and Shore A hardness were determined. The DSC and DMA data indicate that the miscibility between the soft segments and the hard segments of the segmented polyurethanes is dependent on the type of the soft segment, and follows the order: polycarbonate segments > polyester segments > polyether segments. The miscibility between the soft segments and the hard segments plays an important role in determining the transparency of the segmented polyurethanes. As the miscibility increases, the transparency of the segmented polyurethanes increases accordingly. The segmented polyurethanes exhibit high elongation and show ductile behavior. The tensile properties are also affected by the type of the soft segment to some extent. POLYM. ENG. SCI., 47:695,701, 2007. © 2007 Society of Plastics Engineers. [source]


    Morphology and fracture properties relationship of epoxy-diamine systems simultaneously modified with polysulfone and poly(ether imide)

    POLYMER ENGINEERING & SCIENCE, Issue 9 2005
    M.I. Giannotti
    An epoxy-diamine system was simultaneously modified with two immiscible thermoplastic polymers, polysulfone (PSF) and poly (ether imide) (PEI), to develop tough materials without adding high quantities of modifiers, in order to avoid the processibility problems caused by the high initial viscosity of the mixtures. The mechanical behavior of blends containing 10 and 15 wt% total thermoplastic was analyzed and compared with the generated morphologies. The scanning electron micrographs (SEM) of the broken surfaces showed that when a small part of PEI is replaced by PSF, drastic changes in morphology, leading to co-continuity between the phases, occurred together with fracture (critical stress intensity factor, KIC) improvements. As an additional advantage, no noticeable decrease in the elastic modulus (E) of final materials was observed. POLYM. ENG. SCI., 45:1312,1318, 2005. © 2005 Society of Plastics Engineers [source]


    Polymeric composites for use in electronic and microwave devices

    POLYMER ENGINEERING & SCIENCE, Issue 3 2004
    Alexandre Moulart
    The dielectric and conductive properties of thermoplastic (ABS) composites filled with ceramic powder (barium titanate), conductive powders (carbon black, copper) and conductive fibers (carbon, steel) were investigated for use in electromagnetic crystals and microwave devices. Barium titanate/ABS composites were produced that had dielectric constants over 8 and loss tangents of 0.01, which are the requirements for electromagnetic crystals. Carbon black/ABS and steel fiber/ABS composites were obtained with conductivities suitable for electromagnetic shielding (over 10,3 S/cm). Fused decomposition modeling was tested as a method for building electromagnetic crystals and showed promising results. Polym. Eng. Sci. 44:588,597, 2004. © 2004 Society of Plastics Engineers. [source]


    Effect of an epoxy octasilsesquioxane on the thermodegradation of an epoxy/amine system

    POLYMER INTERNATIONAL, Issue 1 2010
    Belén Montero
    Abstract Polyhedral oligomeric silsesquioxanes (POSS®) can be added to thermoplastic and thermostable polymers to obtain hybrid materials with only a minor tendency to suffer ignition. The aim of the work reported was to analyse the influence of an octafunctional POSS® in the pyrolysis of an epoxy/amine system as well as during the combustion process. Thermal degradation of the modified materials, with respect to the unmodified ones, was analysed using thermogravimetric analysis. As the content of POSS® increased the stability improved and the char/ceramic yields were higher. The Kissinger,Akahira,Sunose method was applied to the modified blends and it showed a decrease in the activation energy with POSS® content. Empirical kinetic models, as well as generalized master plots, were applied to explain the degradation mechanism for ternary blends. The limiting oxygen index parameter was measured to analyse the fire retardancy effect of POSS®: it increased from 24.3 to 25.4% with the addition of 2.5 wt% of POSS®. The mechanism of thermal degradation of the hybrid materials based on an epoxy resin is affected by the presence of the octaepoxy POSS®. Only small amounts of POSS® are necessary to enhance the combustion resistance of the system. Copyright © 2009 Society of Chemical Industry [source]


    Process Chain for Tailoring the Refractive Index of Thermoplastic Optical Materials using Ceramic Nanoparticles

    ADVANCED ENGINEERING MATERIALS, Issue 6 2005
    E. Ritzhaupt-Kleissl
    Interconnections between active optical devices like laser diodes and polymer optical fibres are a crucial factor of optical damping due to coupling losses at the interfaces. Tailoring the refractive index of thermoplastic polymers can diminish these damping losses. The use of modified thermoplastics in an injection moulding process allows a high throughput and therefore a cost effective method for manufacturing passive optical parts with improved properties. [source]


    Comparison of the modified three-rail shear test and the [(+45°,,45°)]ns tensile test for pure shear fatigue loading of carbon fabric thermoplastics

    FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 6 2008
    I. DE BAERE
    ABSTRACT The (three)-rail shear test is rarely considered for testing of fibre-reinforced composites under pure shear fatigue loading conditions because of all experimental difficulties. However, in this article, a carbon fabric-reinforced PPS is tested using a modified three-rail shear test setup. The results are compared with [(+45°,,45°)]4s tensile tests with good correspondence. All fatigue experiments were done with R= 0 and the influence of maximum shear stress and frequency is investigated. It can be concluded that an increase in maximum shear stress decreases fatigue lifetime, whereas an increase in frequency increases the lifetime. Before failure, a sudden increase in both temperature and permanent deformation could be detected. Creep tests yielded that the occurring deformation is mainly due to the fatigue loading, rather than due to creep phenomena. [source]


    Fire hazard evaluation of thermoplastics based on analytic hierarchy process (AHP) method

    FIRE AND MATERIALS, Issue 5 2010
    Baogang Yu
    Abstract Combustibility performance of 14 compositions including five main thermoplastics (polycarbonate (PC), polypropylene (PP), high impact polystyrene (HIPS), acrylonitrile butadiene styrene (ABS) and poly (vinyl chloride) (PVC)) was tested by cone calorimeter. The fire growth index, total heat release amount index, total smoke release amount index and toxicity product index were calculated, based on which an index system for evaluating fire hazard was set up. All factors in this index system had been analyzed by the analytic hierarchy process, and the specific weight for each factor had been determined. Then fire hazard of thermoplastics was evaluated considering integrated fire hazard index. The results show that fire hazards of HIPS-phosphate fire retardant (PFR), PVC-non-flame retardant, ABS-brominated flame retardant (BFR) and PC/ABS-PFR are higher than PC-BFR and PP-non-halogenated flame retardant. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Cone calorimeter analysis of UL-94 V-rated plastics,

    FIRE AND MATERIALS, Issue 4 2007
    Alexander B. Morgan
    Abstract Cone calorimeter analysis was conducted on 18 thermoplastics with different UL-94 vertical burn test (V) ratings. Ratings varied from V-0 to no rating (NR), and the types of thermoplastics included were polycarbonate (PC), acrylonitrile,butadiene,styrene (ABS), PC/ABS blends, high-impact polystyrene (HIPS), polypropylene (PP), and poly(vinyl chloride) (PVC). Our analysis of the cone calorimeter data found that there were correlations between UL-94 V rating and some cone calorimeter measurements (peak heat release rate (HRR) average and HRR at 60 s) and no relationship for other measurements (time to ignition and total heat release). However, no precise correlation was found due to significant differences in flame retardant mechanism and polymer fuel energy values. In this paper, we seek to explain further why a broad quantitative relationship between UL-94 V and cone calorimeter remains elusive, and also to show how the cone calorimeter can be used to understand why a material passes or fails a particular UL-94 V rating. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Visualization of the foaming mechanism of polyethylene blown by chemical blowing agents under ambient pressure

    ADVANCES IN POLYMER TECHNOLOGY, Issue 4 2007
    Remon Pop-Iliev
    Abstract Understanding the fundamental mechanisms that govern the foaming process is the most essential universal prerequisite for developing effective processing strategies for fabricating high-quality foamed plastic products using any type of foaming technology. Despite chemically blown foaming of thermoplastics under atmospheric pressure has been successfully implemented in rotational foam molding over the last decade, the related open literature does not provide substantial research addressing the fundamentals of this unique foaming mechanism. The present study focuses on clarifying the fundamental foaming mechanisms that govern the successful manufacture of thermoplastic foams using a chemical blowing agent under low-pressure (atmospheric) conditions. The presented research is mainly based on observing a series of visualization experiments conducted using a custom-made visualization system including an optical microscope and a computerized CCD camera imaging system, which was utilized for investigating the behavior of foamable polyethylene samples prepared by using the compression-molding method. © 2008 Wiley Periodicals, Inc. Adv Polym Techn 26:213,222, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20102 [source]


    Factors affecting the formation of fingering in water-assisted injection-molded thermoplastics

    ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2006
    Shih-Jung Liu
    Abstract Water-assisted injection-molding technology has received extensive attention in recent years, due to the lightweight of plastic parts, relatively low-resin cost per part, faster cycle time, and flexibility in the design and manufacture. However, there are still some unsolved problems that confound the overall success of this technology. One of these is the water "fingering" phenomenon, in which the water bubbles penetrate outside designed water channels and form finger-shape branches. This study has investigated the effects of various processing parameters on the formation of fingering in water-assisted injection-molded thermoplastic parts. Both amorphous and semicrystalline polymers were used to mold the parts. The influence of water channel geometry, including aspect ratio and fillet geometry, on the fingering was also investigated. It was found that water-assisted injection-molded amorphous materials gave less fingering, while molded semicrystalline parts gave more fingering when compared to those molded by gas-assisted injection molding. For the water channels used in this study, the channels with a rib on the top produced parts with the least water fingering. Water fingering in molded parts decreases with the height-to-thickness ratio of the channels. The water pressure, water injection delay time and short-shot size were found to be the principal parameters affecting the formation of water fingering. In addition, a numerical simulation based on the transient heat conduction model was also carried out to help better explain the mechanism for the formation of fingering in water-assisted injection-molded thermoplastics. © 2006 Wiley Periodicals, Inc. Adv Polym Techn 25: 98,108, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20062 [source]


    Online temperature measurement and simultaneous diameter estimation of fibers by thermography of the spinline in the melt spinning process

    ADVANCES IN POLYMER TECHNOLOGY, Issue 3 2004
    M. Golzar
    Abstract Online measurements of the temperature and the diameter of fibers in the melt spinning process of thermoplastics are discussed. The temperature and the diameter of fibers can be applied in many fields such as fiber formation modelling, cooling rate behavior (Nusselt number), and rheological investigations (apparent extensional viscosity) of polymers. The online measurements along the spinline were carried out with an infrared camera during the melt spinning process. Two different experiments were designed and carried out to find the correction factor, i.e., the emissivity. The results show that the emissivity correction factor depends on the polymer type and the fiber diameter. Usually the diameter of the fibers is measured by an instrument or by direct velocity measurements invoking the continuity equation. In this new approach the diameter is found directly by the evaluation of the measured temperature. Therefore only one apparatus, namely an infrared camera taking snapshots, is required to find the fiber diameter. The key of this method can be seen in the temperature difference between the fiber and the environment. A mathematical procedure was developed to estimate the diameter of the fiber from the distribution curve. © 2004 Wiley Periodicals, Inc. Adv Polym Techn 23: 176,185, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20008 [source]