Home About us Contact | |||
Thermal Systems (thermal + system)
Selected AbstractsPrediction of thermal sensation based on simulation of temperature distribution in a vehicle cabinHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 3 2001Takuya Kataoka Abstract Thermal comfort in an automobile is predicted with numerical simulation. The flow field and temperature distribution are solved with a grid system based on many small cubic elements which are generated automatically with cabin and passenger configuration. Simulation of temperature is combined with simulation of cooling cycle and calculation of heat transfer at the wall including solar radiation to treat transient and actual driving conditions of the vehicle. In order to evaluate thermal comfort, transitional effective temperature is calculated from simulated thermal conditions and physiologic values which are calculated by a simple model of a human thermal system. This system can well predict thermal sensation of passengers in a short period of time. © 2001 Scripta Technica, Heat Trans Asian Res, 30(3): 195,212, 2001 [source] Performance evaluation of an electricity base load engine cogeneration systemINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 9 2010Denilson Boschiero do Espirito Santo Abstract Decentralized electricity production by cogeneration can result in primary energy economy, as these systems operate with a high-energy utilization factor (EUF), producing electricity and recovering energy rejected by the prime mover to meet site thermal demands. Because energy demands in buildings vary with such factors as the hour of the day, level of activity and climatic conditions, cogeneration case studies should consider different system configurations, energy demand profiles and climatic profiles. This paper analyzes an engine cogeneration system as an integrated thermal system by means of a computational simulation program. The simulation takes into account characteristics of the system, characteristics of the pieces of equipment, design choices and parameters, the variability of operating conditions, site energy demand profiles and climatic data to evaluate the performance of the cogeneration plant. Performance evaluation is based on: (i) the EUF, (ii) the exergy efficiency and (iii) primary energy savings analysis. Copyright © 2009 John Wiley & Sons, Ltd. [source] An examination of exergy destruction in organic Rankine cyclesINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 10 2008P. J. Mago Abstract The exergy topological method is used to present a quantitative estimation of the exergy destroyed in an organic Rankine cycle (ORC) operating on R113. A detailed roadmap of exergy flow is presented using an exergy wheel, and this visual representation clearly depicts the exergy accounting associated with each thermodynamic process. The analysis indicates that the evaporator accounts for maximum exergy destroyed in the ORC and the process responsible for this is the heat transfer across a finite temperature difference. In addition, the results confirm the thermodynamic superiority of the regenerative ORC over the basic ORC since regenerative heating helps offset a significant amount of exergy destroyed in the evaporator, thereby resulting in a thermodynamically more efficient process. Parameters such as thermodynamic influence coefficient and degree of thermodynamic perfection are identified as useful design metrics to assist exergy-based design of devices. This paper also examines the impact of operating parameters such as evaporator pressure and inlet temperature of the hot gases entering the evaporator on ORC performance. It is shown that exergy destruction decreases with increasing evaporator pressure and decreasing turbine inlet temperatures. Finally, the analysis reveals the potential of the exergy topological methodology as a robust technique to identify the magnitude of irreversibilities associated with real thermodynamic processes in practical thermal systems. Copyright © 2008 John Wiley & Sons, Ltd. [source] PV thermal systems: PV panels supplying renewable electricity and heatPROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 6 2004Dr. Wim G. J. van Helden Abstract With PV Thermal panels sunlight is converted into electricity and heat simultaneously. Per unit area the total efficiency of a PVT panel is higher than the sum of the efficiencies of separate PV panels and solar thermal collectors. During the last 20 years research into PVT techniques and concepts has been widespread, but rather scattered. This reflects the number of possible PVT concepts and the accompanying research and development problems, for which it is the general goal to optimise both electrical and thermal efficiency of a device simultaneously. The aspects that can be optimised are, amongst others, the spectral characteristics of the PV cell, its solar absorption and the internal heat transfer between cells and heat-collecting system. Another important level of optimisation is for the PVT device geometry and the integration into a system. The electricity and heat demand and the temperature level of the heat determine the choice for a certain system set-up. With an optimal design, PVT systems can supply buildings with 100% renewable electricity and heat in a more cost-effective manner than separate PV and solar thermal systems and thus contribute to the long-term international targets on implementation of renewable energy in the built environment. Copyright © 2004 John Wiley & Sons, Ltd. [source] |