Thermal Response (thermal + response)

Distribution by Scientific Domains


Selected Abstracts


Oxidation Behavior of Silicon-Infiltrated Carbon/Carbon Composites in High-Enthalpy Convective Environment

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2001
Toshio Ogasawara
Thermal response and oxidation behavior of commercial metal-silicon-infiltrated carbon/carbon composites (MICMATTM; Si-CC) were evaluated in a high-enthalpy convective environment using an arc jet facility (an arc wind tunnel). Composite specimens were put into a supersonic plasma air stream having a gas enthalpy of 12.7,18.8 MJ/kg for 50,600 s. Cold-wall heat fluxes measured by a Gardon-type calorimeter ranged from 1.0 to 1.8 MW/m2, and the maximum surface temperature reached 1300°,1660°C. After the arc jet testing, no surface recession was observed in the samples, and the mass loss rate of the composites was far less than that of graphite. The excellent oxidation resistance was caused by formation of a porous SiC layer at the surface of the composite. Oxidation behavior of the composites is discussed based on a simplified airflow blocking model of the porous SiC layer. The composites exhibited excellent oxidation resistance for short-term exposure in high-enthalpy airflow. [source]


Preparation of poly(acrylonitrile,butadiene,styrene)/montmorillonite nanocomposites and degradation studies during extrusion reprocessing

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2009
E.-K. Karahaliou
Abstract In this study, the preparation of organically modified montmorillonite/poly(acrylonitrile,butadiene,styrene) (ABS) nanocomposites was studied by melt blending in a twin-screw extruder. The composite material was subjected to a series of five extrusion cycles, and the effect of reprocessing on the material's structural properties was investigated. More specifically, chemical changes were studied with attenuated total reflectance/Fourier transform infrared analysis, the thermal response was recorded by differential scanning calorimetry experiments, and the thermal stability was detected with thermogravimetric analysis. Also, the rheological properties of these blends were investigated via melt flow index tests as a measure of their processability during melt mixing and molding processes. Furthermore, the mechanical strength of the obtained mixtures was explored, and the observed interactions were interpreted in terms of the influence of each component on the functional properties of the final mixture. This attempt enriched our knowledge about the recycling of ABS, with the additional aspect of the use of collected data from more complex systems, that is, composite materials, where the montmorillonite nanoparticles play a role in the interactions initiated by repeated processing. The experimental results of this study show that the reprocessing of ABS/montmorillonite induced oxidation products, but the rheological, mechanical, and thermal properties and the thermal and color stabilities of the composites remained almost stable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


Fetal Learning With Ethanol: Correlations Between Maternal Hypothermia During Pregnancy and Neonatal Responsiveness to Chemosensory Cues of the Drug

ALCOHOLISM, Issue 5 2004
Paula Abate
Abstract: Background: Fetuses learn about ethanol odor when the drug is present in the amniotic fluid. Prenatal learning comprising ethanol's chemosensory cues also suggests an acquired association between ethanol's chemosensory and postabsorptive properties. Ethanol-related thermal disruptions have been implicated as a significant component of the drug's unconditioned properties. In the present study, ethanol-induced thermal changes were analyzed in pregnant rats subjected to a moderate ethanol dose. This thermal response was later tested for its correlation with the responsiveness of the progeny to ethanol and nonethanol chemosensory stimuli. Methods: During gestational day (GD) 14, pregnant rats were subjected to a minor surgical procedure to place a subcutaneous telemetric thermal sensor in the nape of the neck. During GDs 17 to 20, females received a daily intragastric administration of ethanol (2 g/kg) or water, using solutions kept at room temperature. Maternal body temperatures were recorded before and after (4 consecutive hours) the administration of water or ethanol. Newborns representative of both prenatal treatments were tested in terms of behavioral activity elicited by the smell of ethanol or of a novel odorant (cineole). A third group of pups were tested in response to unscented air stimulation. Results: Ethanol administration during late gestation induced reliable maternal hypothermia, a thermal disruption greater than that observed in water-treated females. It was systematically observed that maternal ethanol-induced hypothermia negatively correlated with neonatal motor reactivity elicited by ethanol olfactory stimulation. No other significant correlations were observed in terms of responsiveness to cineole or to unscented air in animals prenatally exposed to ethanol or water. Conclusions: In conjunction with prior research, the present results indicate that fetal ethanol exposure may yield learning of an association between ethanol's sensory and unconditioned properties. Ethanol-induced hypothermia during late gestation seems to represent a significant component of ethanol's unconditioned consequences. Specifically, ethanol-related thermal disruptions in the womb are highly predictive of neonatal responsiveness to ethanol's chemosensory cues that are known to be processed by the near-term fetus. [source]


Simplified heat exchange model for semiconductor laser diodes thermal parameters extraction

LASER PHYSICS LETTERS, Issue 11 2005
P. S. André
Abstract By investigating the heat flow mechanism in a semiconductor laser diode, we demonstrate a comprehensive technique for optical device thermal parameters extraction to be used in the prediction of the laser performance This accurate and precise heat exchange model takes into account the relevant heat exchange mechanism and mechanical considerations of the laser diode mounting. We measured the thermal response of a semiconductor laser diode attach to a substrate, deriving from those the device thermal parameters such as heat capacity and thermal conductance for the device and subtract. From the estimated values a prediction of the real laser temperature response is obtained directly from the measurements realized in the substrate. (© 2005 by Astro, Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA) [source]


Determining Thermal Test Requirements for Automotive Components

QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, Issue 2 2004
Dustin S. Aldridge
Abstract Component thermal response is dependent upon numerous factors including the atmospheric temperature, heat sinks and sources, vehicle use time, etc. The number of significant thermal cycles and time at temperature for many components will be related to the number of times the engine is started. This paper provides a methodology to determine the number of significant thermal cycles and time at temperature a product will experience in 10 years which will depend upon engine starts. These calculations provide the basis for an accelerated test requirement to qualify the product based upon customer usage measurements. Because of the trace ability and linkage, the methodology is more marketable to internal and external customers, and less likely to be questioned or arbitrarily overruled. It also enables relative severity assessments for historical customer requirements compared with field needs. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Spin-Crossover Physical Gels: A Quick Thermoreversible Response Assisted by Dynamic Self-Organization

CHEMISTRY - AN ASIAN JOURNAL, Issue 1 2007
Tsuyohiko Fujigaya
Abstract Iron(II) triazolate coordination polymers with lipophilic sulfonate counterions with alkyl chains of different lengths have been synthesized. In hydrocarbon solvents, these polymers formed a physical gel and showed a thermoreversible spin transition upon the sol,gel phase transition. The formation of a hydrogen-bonding network between the triazolate moieties and sulfonate ions, bridged by water molecules, was found to play an important role in the spin-crossover event. The spin-transition temperature was tuned over a wide range by adding a small amount of 1-octanol, a scavenger for hydrogen-bonding interactions. This additive was essential for the iron(II) species to adopt a low-spin state. Compared with nongelling references in aromatic solvents, the spin-crossover physical gels are characterized by their quick thermal response, which is due to a rapid restoration of the hydrogen-bonding network, possibly because of a dynamic structural ordering through an enhanced lipophilic interaction of the self-assembling components in hydrocarbon solvents. [source]


Opposing clines for high and low temperature resistance in Drosophila melanogaster

ECOLOGY LETTERS, Issue 5 2002
Ary A. Hoffmann
Abstract In insects, species comparisons suggest a weak association between upper thermal limits and latitude in contrast to a stronger association for lower limits. To compare this to latitudinal patterns of thermal responses within species, we considered latitudinal variation in heat and cold resistance in Drosophila melanogaster. We found opposing clines in resistance to these temperature extremes in comparisons of 17,24 populations from coastal eastern Australia. Knockdown time following heat shock increased towards the tropics, whereas recovery time following cold shock decreased towards temperate latitudes. Mortality following cold shock also showed a clinal pattern. Clinal associations with latitude were linear and related to minimum temperatures in the coldest month (for cold resistance) and maximum temperatures in the warmest month (for heat resistance). This suggests that within species both high and low temperature responses can vary with latitude as a consequence of direct or indirect effects of selection. [source]


Characterization of the respiration of 3T3 cells by laser-induced fluorescence during a cyclic heating process

LASER PHYSICS LETTERS, Issue 4 2010
J. Beuthan
Abstract The use of lasers in the near infrared spectral range for laser-induced tumor therapy (LITT) demands a new understanding of the thermal responses to repetitive heat stress. The analysis of laser-induced fluorescence during vital monitoring offers an excellent opportunity to solve many of the related issues in this field. The laser-induced fluorescence of the cellular coenzyme NADH was investigated for its time and intensity behavior under heat stress conditions. Heat was applied to vital 3T3 cells (from 22 °C to 50 °C) according to a typical therapeutical time regime. A sharp increase in temperature resulted in non-linear time behavior when the concentration of this vital coenzyme changed. There are indications that biological systems have a delayed reaction on a cellular level. These results are therefore important for further dosimetric investigations. (© 2010 by Astro Ltd., Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA) [source]


Cardiovascular and thermal responses evoked from the periaqueductal grey require neuronal activity in the hypothalamus

THE JOURNAL OF PHYSIOLOGY, Issue 6 2009
Rodrigo C. A. De Menezes
Stimulation of neurons in the lateral/dorsolateral periaqueductal grey (l/dlPAG) produces increases in heart rate (HR) and mean arterial pressure (MAP) that are, according to traditional views, mediated through projections to medullary autonomic centres and independent of forebrain mechanisms. Recent studies in rats suggest that neurons in the l/dlPAG are downstream effectors responsible for responses evoked from the dorsomedial hypothalamus (DMH) from which similar cardiovascular changes and increase in core body temperature (Tco) can be elicited. We hypothesized that, instead, autonomic effects evoked from the l/dlPAG depend on neuronal activity in the DMH. Thus, we examined the effect of microinjection of the neuronal inhibitor muscimol into the DMH on increases in HR, MAP and Tco produced by microinjection of N -methyl- d -aspartate (NMDA) into the l/dlPAG in conscious rats. Microinjection of muscimol alone modestly decreased baseline HR and MAP but failed to alter Tco. Microinjection of NMDA into the l/dlPAG caused marked increases in all three variables, and these were virtually abolished by prior injection of muscimol into the DMH. Similar microinjection of glutamate receptor antagonists into the DMH also suppressed increases in HR and abolished increases in Tco evoked from the PAG. In contrast, microinjection of muscimol into the hypothalamic paraventricular nucleus failed to reduce changes evoked from the PAG and actually enhanced the increase in Tco. Thus, our data suggest that increases in HR, MAP and Tco evoked from the l/dlPAG require neuronal activity in the DMH, challenging traditional views of the place of the PAG in central autonomic neural circuitry. [source]


Maximized PUFA measurements improve insight in changes in fatty acid composition in response to temperature

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2009
Coby van Dooremalen
Abstract A general mechanism underlying the response of ectotherms to environmental changes often involves changes in fatty acid composition. Theory predicts that a decrease in temperature causes an increase in unsaturation of fatty acids, with an important role for long-chain poly-unsaturated fatty acids (PUFAs). However, PUFAs are particularly unstable and susceptible to peroxidation, hence subtle differences in fatty acid composition can be challenging to detect. We determined the fatty acid composition in springtail (Collembola) in response to two temperatures (5°C and 25°C). First, we tested different sample preparation methods to maximize PUFAs. Treatments consisted of different solvents for primary lipid extraction, mixing with antioxidant, flushing with inert gas, and using different temperature exposures during saponification. Especially slow saponification at low temperature (90,min at 70°C) in combination with replacement of headspace air with nitrogen during saponification and methylation maximized PUFAs for GC analysis. Applying these methods to measure thermal responses in fatty acid composition, the data showed that the (maximized) proportion of C20 PUFAs increased at low acclimation temperature. However, C18 PUFAs increased at high acclimation temperature, which is contrary to expectations. Our study illustrates that PUFA levels in lipids may often be underestimated and this may hamper a correct interpretation of differential responses of fatty acid composition. © 2009 Wiley Periodicals, Inc. [source]


Three-Dimensional Structure and Thermal Stability Studies of DNA Nanostructures by Energy Transfer Spectroscopy

CHEMPHYSCHEM, Issue 10 2010
Jong Bum Lee Dr.
Structural changes and stability of DNA nanoarchitectures including Y-shaped DNA (see picture), dendrimer-like DNA, and DNA hydrogels are investigated. The results demonstrate the feasibility and flexibility of FRET and NSET (Förster resonance/ nanometal surface- energy transfer) in determining difficult-to-obtain 3D structures and characterizing the thermal responses of DNA nanoarchitectures in real time. [source]