Thermal Pulse (thermal + pulse)

Distribution by Scientific Domains


Selected Abstracts


LPHT metamorphism in a late orogenic transpressional setting, Albera Massif, NE Iberia: implications for the geodynamic evolution of the Variscan Pyrenees

JOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2007
M. VILÀ
Abstract During the Late Palaeozoic Variscan Orogeny, Cambro-Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low-pressure/high-temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite-muscovite, biotite, andalusite-cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench-dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P,T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P,T estimates show that rocks from the biotite-in isograd reached peak-metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low-grade part of the andalusite-cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite-cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P,T trajectory is inferred using a combination of reaction microstructures with appropriate P,T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision. [source]


Reconstructing P,T paths during continental collision using multi-stage garnet (Gran Paradiso nappe, Western Alps)

JOURNAL OF METAMORPHIC GEOLOGY, Issue 6 2006
B. LE BAYON
Abstract Garnet,chloritoid-bearing micaschists from the Gran Paradiso massif (Western Alps) contain evidence of a polymetamorphic evolution. Detailed textural observations reveal that two stages of garnet growth are present in the micaschists, interpreted as: (i) relics of an early metamorphism of pre-Alpine age and (ii) newly grown Alpine garnet, respectively. Both generations of garnet preserve growth zoning. From thermocalc -based numerical modelling of mineral assemblages in pressure,temperature (P,T) pseudosections, we infer that garnet 1 grew at increasing temperature and slightly increasing pressure, whereas garnet 2 grew at decreasing pressure and slightly increasing temperature. Estimated P,T conditions are ,620 °C, 6 kbar for the peak of the pre-Alpine event, and of 490 °C, 18,20 kbar for the pressure peak of the Alpine event. Modelling of the modal proportion and chemical composition of garnet (i) shows that the subsequent decompression (to 14,15 kbar at 550 °C) must have been accompanied by moderate heating and (ii) does not support a stage of final temperature increase following decompressional cooling. This argues against a late thermal pulse associated with mantle delamination. Preservation of growth zoning in both generations of garnet and the limited amount of diffusive re-equilibration at the boundary between the two garnets suggests that the rocks were subjected to fast burial and exhumation rates, consistent with data obtained from other internal Alpine units. [source]


Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001

METEORITICS & PLANETARY SCIENCE, Issue 6 2007
M. S. BELL
Naturally occurring siderite was first characterized by a variety of techniques to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten-alloy holders (W = 90%, Ni = 6%, Cu = 4%) to further ensure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are >50% Fe+2 in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of sizes (,50,100 nm), compositions (100% magnetite to 80% magnetite-20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) and as the magnetites in Martian meteorite Allan Hills (ALH) 84001. Fritz et al. (2005) previously concluded that ALH 84001 experienced ,32 GPa pressure and a resultant thermal pulse of ,100,110°C. However, ALH 84001 contains evidence of local temperature excursions high enough to melt feldspar, pyroxene, and a silica-rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to > 470°C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH 84001 could be a product of shock devolatilization of siderite as well. [source]


Distant future of the Sun and Earth revisited

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
K.-P. Schröder
ABSTRACT We revisit the distant future of the Sun and the Solar system, based on stellar models computed with a thoroughly tested evolution code. For the solar giant stages, mass loss by the cool (but not dust-driven) wind is considered in detail. Using the new and well-calibrated mass-loss formula of Schröder & Cuntz, we find that the mass lost by the Sun as a red giant branch (RGB) giant (0.332 M,, 7.59 Gyr from now) potentially gives planet Earth a significant orbital expansion, inversely proportional to the remaining solar mass. According to these solar evolution models, the closest encounter of planet Earth with the solar cool giant photosphere will occur during the tip-RGB phase. During this critical episode, for each time-step of the evolution model, we consider the loss of orbital angular momentum suffered by planet Earth from tidal interaction with the giant Sun, as well as dynamical drag in the lower chromosphere. As a result of this, we find that planet Earth will not be able to escape engulfment, despite the positive effect of solar mass loss. In order to survive the solar tip-RGB phase, any hypothetical planet would require a present-day minimum orbital radius of about 1.15 au. The latter result may help to estimate the chances of finding planets around white dwarfs. Furthermore, our solar evolution models with detailed mass-loss description predict that the resulting tip-AGB (asymptotic giant branch) giant will not reach its tip-RGB size. Compared to other solar evolution models, the main reason is the more significant amount of mass lost already in the RGB phase of the Sun. Hence, the tip-AGB luminosity will come short of driving a final, dust-driven superwind, and there will be no regular solar planetary nebula (PN). The tip-AGB is marked by a last thermal pulse, and the final mass loss of the giant may produce a circumstellar (CS) shell similar to, but rather smaller than, that of the peculiar PN IC 2149 with an estimated total CS shell mass of just a few hundredths of a solar mass. [source]