Home About us Contact | |||
Thermal Fronts (thermal + front)
Selected AbstractsAssessing the variability of hydrographic processes influencing the life cycle of the Sicilian Channel anchovy, Engraulis encrasicolus, by satellite imageryFISHERIES OCEANOGRAPHY, Issue 1 2005JESÚS GARCÍA LAFUENTE Abstract Three oceanographic surveys carried out in the Sicilian Channel during the spawning season (June to July) of anchovy (Engraulis encrasicolus) showed a close relationship between anchovy reproductive strategy and important hydrographic structures. A time series of satellite-derived sea surface temperature images of the Sicilian Channel were analysed by means of empirical orthogonal functions and the dominant empirical modes were studied in detail. The first empirical mode captured much of the original variance and reproduced the trajectory of the Atlantic Ionian Stream (AIS), the principal hydrodynamic feature of the area. The time coefficients of modes 1 and 2 had seasonal signals which, when combined, accounted for the enhancement of the thermal front, clearly visible off Cape Passero (southernmost coast of Sicily) during summer. As the area constituted the principal nursery ground of the Sicilian Channel anchovy, the combination of the time coefficients of these modes was considered a potential indicator of the food particle concentration usually associated with oceanic fronts, which provided the energy requirements for larval growth. Mode 3 described the north/south displacements of the mean AIS trajectory, which modified the surface temperature regime of the anchovy spawning habitat. Therefore, the time coefficients of this mode were used as a potential indicator of anchovy spawning habitat variability. The capability of time coefficients of modes 2 and 3 to modify the main pattern depicted by mode 1 were tested successfully against in situ oceanographic observations. [source] Thermographic visualization of cell death in tobacco and ArabidopsisPLANT CELL & ENVIRONMENT, Issue 1 2001L. Chaerle ABSTRACT Pending cell death was visualized by thermographic imaging in bacterio-opsin transgenic tobacco plants. Cell death in these plants was characterized by a complex lesion phenotype. Isolated cell death lesions were preceded by a colocalized thermal effect, as previously observed at sites infected by tobacco mosaic virus (TMV) (Chaerle et al. 1999Nature Biotechnology 17, 813,816). However, in most cases, a coherent front of higher temperature, trailed by cell death, initiated at the leaf base and expanded over the leaf lamina. In contrast to the homogenous thermal front, cell death was first visible close to the veins, and subsequently appeared as discrete spots on the interveinal tissue, as cell death spread along the veins. Regions with visible cell death had a lower temperature because of water evaporation from damaged cells. In analogy with previous observations on the localized tobacco,TMV interaction (Chaerle et al. 1999), the kinetics of thermographic and continuous gas exchange measurements indicated that stomatal closure preceded tissue collapse. Localized spontaneous cell death could also be presymptomatically visualized in the Arabidopsis lsd2 mutant. [source] Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to seasons and oceanographic conditions in the eastern Pacific OceanFISHERIES OCEANOGRAPHY, Issue 5 2007TAKASHI KITAGAWA Abstract Electronically tagged juvenile Pacific bluefin, Thunnus orientalis, were released off Baja California in the summer of 2002. Time-series data were analyzed for 18 fish that provided a record of 380 ± 120 days (mean ± SD) of ambient water and peritoneal cavity temperatures at 120 s intervals. Geolocations of tagged fish were estimated based on light-based longitude and sea surface temperature-based latitude algorithms. The horizontal and vertical movement patterns of Pacific bluefin were examined in relation to oceanographic conditions and the occurrence of feeding events inferred from thermal fluctuations in the peritoneal cavity. In summer, fish were located primarily in the Southern California Bight and over the continental shelf of Baja California, where juvenile Pacific bluefin use the top of the water column, undertaking occasional, brief forays to depths below the thermocline. In autumn, bluefin migrated north to the waters off the Central California coast when thermal fronts form as the result of weakened equatorward wind stress. An examination of ambient and peritoneal temperatures revealed that bluefin tuna fed during this period along the frontal boundaries. In mid-winter, the bluefin returned to the Southern California Bight possibly because of strong downwelling and depletion of prey species off the Central California waters. The elevation of the mean peritoneal cavity temperature above the mean ambient water temperature increased as ambient water temperature decreased. The ability of juvenile bluefin tuna to maintain a thermal excess of 10°C occurred at ambient temperatures of 11,14°C when the fish were off the Central California coast. This suggests that the bluefin maintain peritoneal temperature by increasing heat conservation and possibly by increasing internal heat production when in cooler waters. For all of the Pacific bluefin tuna, there was a significant correlation between their mean nighttime depth and the visible disk area of the moon. [source] Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking sharkJOURNAL OF ANIMAL ECOLOGY, Issue 4 2005DAVID W. SIMS Summary 1Megaplanktivores such as filter-feeding sharks and baleen whales are at the apex of a short food chain (phytoplankton,zooplankton,vertebrate) and are sensitive indicators of sea-surface plankton availability. Even though they spend the majority of their time below the surface it is still not known how most of these species utilize vertical habitat and adapt to short-term changes in food availability. 2A key factor likely to control vertical habitat selection by planktivorous sharks is the diel vertical migration (DVM) of zooplankton; however, no study has determined whether specific ocean-habitat type influences their behavioural strategy. Based on the first high-resolution dive data collected for a plankton-feeding fish species we show that DVM patterns of the basking shark Cetorhinus maximus reflect habitat type and zooplankton behaviour. 3In deep, well-stratified waters sharks exhibited normal DVM (dusk ascent,dawn descent) by tracking migrating sound-scattering layers characterized by Calanus and euphausiids. Sharks occupying shallow, inner-shelf areas near thermal fronts conducted reverse DVM (dusk descent,dawn ascent) possibly due to zooplankton predator,prey interactions that resulted in reverse DVM of Calanus. 4These opposite DVM patterns resulted in the probability of daytime-surface sighting differing between these habitats by as much as two orders of magnitude. Ship-borne surveys undertaken at the same time as trackings reflected these behavioural differences. 5The tendency of basking sharks to feed or rest for long periods at the surface has made them vulnerable to harpoon fisheries. Ship-borne and aerial surveys also use surface occurrence to assess distribution and abundance for conservation purposes. Our study indicates that without bias reduction for habitat-specific DVM patterns, current surveys could under- or overestimate shark abundance by at least 10-fold. [source] Design of a thermally balanced membrane reformer for hydrogen productionAICHE JOURNAL, Issue 10 2008David S. A. Simakov Abstract Hydrogen production by autothermal methane steam reforming in a catalytic fixed bed membrane reactor has been analyzed and simulated. The two-compartment reactor indirectly couples the endothermic steam reforming with methane oxidation, while hydrogen is separated by a permselective Pd membrane. Simulations of the reactor, using published kinetics, map the acceptable domain of operation and the optimal set of operating parameters. The simulations exhibit slow-moving thermal fronts and the steady-state operation domains bounded by stationary fronts, separating domains of upstream and downstream-moving fronts. Front velocity depends on thermal coupling and hydrogen separation. An analytical approximation for the thermal front velocity in a thermally balanced reactor has been developed. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source] Detection and climatology of fronts in a high-resolution model reanalysis over the AlpsMETEOROLOGICAL APPLICATIONS, Issue 1 2010J. Jenkner Abstract The identification of low-level thermal fronts is particularly challenging in high-resolution model fields over complex terrain. Firstly, direct model output often contains numerical noise which spuriously influences the high-frequency variability of thermal parameters. Secondly, the boundary layer interferes via convection and consequently leaves its thermal marks on low levels. Here, an automated objective method for the detection of frontal lines is introduced which is designed to be insusceptible to consequences of small grid spacings. To this end, existing algorithms are readopted and combined in a novel way. The overall technique subdivides into a basic detection of fronts and a supplemental division into local fronts and synoptic fronts. The fundamental parts of the detection are: (1) a smoothing of the initial fields, (2) a definition of the frontal strength, and, (3) a localisation with the thermal front parameter. The local fronts are identified by means of a classification of open and closed thermal contours. The resulting data comprise the spatial outline of the frontal structures in a binary field as well as their type and movement. The novel methodology is applied to a 3 year high-resolution reanalysis over central Europe computed with the COSMO model using a grid spacing of 7 km. Grid-point based climatologies are derived for the Alpine region. Frequencies of occurrence and characteristics of motion are analysed for different frontal types. The novel climatology also provides quantitative evidence of dynamical properties such as the retardation of cold fronts ahead of mountains and the dissolution of warm fronts over mountains. Copyright © 2009 Royal Meteorological Society [source] |