Thermal Diffusivity (thermal + diffusivity)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


Effect of Aluminum Oxide Addition on the Flexural Strength and Thermal Diffusivity of Heat-Polymerized Acrylic Resin

JOURNAL OF PROSTHODONTICS, Issue 6 2008
Ayman E. Ellakwa BDS
Abstract Purpose: This work was undertaken to investigate the effect of adding from 5% to 20% by weight aluminum oxide powder on the flexural strength and thermal diffusivity of heat-polymerized acrylic resin. Materials and Methods: Seventy-five specimens of heat-polymerized acrylic resin were fabricated. The specimens were divided into five groups (n = 15) coded A to E. Group A was the control group (i.e., unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with aluminum oxide (Al2O3) powder to achieve loadings of 5%, 10%, 15%, and 20% by weight. Specimens were stored in distilled water at 37°C for 1 week before flexural strength testing to failure (5 mm/min crosshead speed) in a universal testing machine. Results were analyzed by one-way analysis of variance and post hoc Tukey paired group comparison tests (p < 0.05). Weibull analysis was used to calculate the Weibull modulus, characteristic strength, and the required stress for 1% and 5% probabilities of failure. Cylindrical test specimens (5 specimens/group) containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). Results: The mean flexural strength values of the heat-polymerized acrylic resin were (in MPa) 99.45, 119.92, 121.19, 130.08, and 127.60 for groups A, B, C, D, and E, respectively. The flexural strength increased significantly after incorporation of 10% Al2O3. The mean thermal diffusivity values of the heat-polymerized acrylic resin (in m2/sec) were 6.8, 7.2, 8.0, 8.5, and 9.3 for groups A, B, C, D, and E, respectively. Thermal diffusivities of the composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler, which suggested that the proper distribution of alumina powders through the insulating polymer matrix might form a pathway for heat conduction. Conclusion: Al2O3 fillers have potential as added components in denture bases to provide increased flexural strength and thermal diffusivity. Increasing the flexural strength and heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction. [source]


Effects of Matrix Cracks on the Thermal Diffusivity of a Fiber-Reinforced Ceramic Composite

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2001
Kathleen R. McDonald
Effects of matrix cracks and the attendant interface debonding and sliding on both the longitudinal and the transverse thermal diffusivities of a unidirectional Nicalon/MAS composite are investigated. The diffusivity measurements are made in situ during tensile testing using a phase-sensitive photothermal technique. The contribution to the longitudinal thermal resistance from each of the cracks is determined from the longitudinal diffusivity along with measurements of crack density. By combining the transverse measurements with the predictions of an effective medium model, the thermal conductance of the interface (characterized by a Biot number) is determined and found to decrease with increasing crack opening displacement, from an initial value of ,1 to ,0.3. This degradation is attributed to the deleterious effects of interface sliding on the thermal conductance. Corroborating evidence of degradation in the interface conductance is obtained from the inferred crack conductances coupled with a unit cell model for a fiber composite containing a periodic array of matrix cracks. Additional notable features of the material behavior include: (i) reductions of ,20% in both the longitudinal and the transverse diffusivities at stresses near the ultimate strength, (ii) almost complete recovery of the longitudinal diffusivity following unloading, and (iii) essentially no change in the transverse diffusivity following unloading. The recovery of the longitudinal diffusivity is attributed to closure of the matrix cracks. By contrast, the degradation in the interface conductance is permanent, as manifest in the lack of recovery of the transverse diffusivity. [source]


Effect of Aluminum Oxide Addition on the Flexural Strength and Thermal Diffusivity of Heat-Polymerized Acrylic Resin

JOURNAL OF PROSTHODONTICS, Issue 6 2008
Ayman E. Ellakwa BDS
Abstract Purpose: This work was undertaken to investigate the effect of adding from 5% to 20% by weight aluminum oxide powder on the flexural strength and thermal diffusivity of heat-polymerized acrylic resin. Materials and Methods: Seventy-five specimens of heat-polymerized acrylic resin were fabricated. The specimens were divided into five groups (n = 15) coded A to E. Group A was the control group (i.e., unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with aluminum oxide (Al2O3) powder to achieve loadings of 5%, 10%, 15%, and 20% by weight. Specimens were stored in distilled water at 37°C for 1 week before flexural strength testing to failure (5 mm/min crosshead speed) in a universal testing machine. Results were analyzed by one-way analysis of variance and post hoc Tukey paired group comparison tests (p < 0.05). Weibull analysis was used to calculate the Weibull modulus, characteristic strength, and the required stress for 1% and 5% probabilities of failure. Cylindrical test specimens (5 specimens/group) containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). Results: The mean flexural strength values of the heat-polymerized acrylic resin were (in MPa) 99.45, 119.92, 121.19, 130.08, and 127.60 for groups A, B, C, D, and E, respectively. The flexural strength increased significantly after incorporation of 10% Al2O3. The mean thermal diffusivity values of the heat-polymerized acrylic resin (in m2/sec) were 6.8, 7.2, 8.0, 8.5, and 9.3 for groups A, B, C, D, and E, respectively. Thermal diffusivities of the composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler, which suggested that the proper distribution of alumina powders through the insulating polymer matrix might form a pathway for heat conduction. Conclusion: Al2O3 fillers have potential as added components in denture bases to provide increased flexural strength and thermal diffusivity. Increasing the flexural strength and heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction. [source]


Original article: Apparent thermal diffusivity estimation for the heat transfer modelling of pork loin under air/steam cooking treatments

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 9 2010
Massimiliano Rinaldi
Summary Apparent thermal diffusivity linear functions vs. product temperature were estimated for pork cooked under two different treatments (forced convection, FC and forced convection/steam combined, FC/S) at 100, 110, 120 and 140 °C by means of experimental time,temperature data and a developed finite-difference algorithm. Slope and intercept of each function were employed to calculate apparent thermal diffusivity at 40, 55 and 70 °C. Generally, FC/S treatments gave significantly higher apparent thermal diffusivities in comparison with FC conditions. Apparent thermal diffusivities were used to develop a model for cooking time and final core temperature prediction on the basis of oven setting. The model was validated by means of additional cooking tests performed at different temperatures of those employed for model development. Root mean square error values lower than 3.8 °C were obtained comparing predicted and experimental temperature profiles. Percentage errors lower than 3.1% and 3.5% were, respectively, obtained for cooking times and final core temperatures. [source]


Measuring anisotropic thermal conduction in polyisobutylene following step shear strains

AICHE JOURNAL, Issue 3 2000
Hadjira Iddir
The connection between polymer chain orientation and several macroscopic properties in a polymer melt was studied using mechanical and optical techniques. Anisotropic thermal conductivity following shear deformation was measured using forced Rayleigh light scattering, the refractive index tensor is followed using birefringence measurements, and the stress was measured mechanically in a parallel-plate rheometer. The thermal diffusivity measured in the flow and neutral directions increased and decreased, respectively, immediately following the deformation. These quantities then relaxed to the equilibrium value on the time-scale of the stress-relaxation memory. Comparison of the difference between measured flow and neutral direction thermal diffusivities with the analogous flow-induced birefringence in the same deformation provided indirect evidence for a linear relation between stress and thermal diffusivity at two different values of strain. Mechanical measurements were used to characterize the memory of the fluid. [source]


Effects of Matrix Cracks on the Thermal Diffusivity of a Fiber-Reinforced Ceramic Composite

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2001
Kathleen R. McDonald
Effects of matrix cracks and the attendant interface debonding and sliding on both the longitudinal and the transverse thermal diffusivities of a unidirectional Nicalon/MAS composite are investigated. The diffusivity measurements are made in situ during tensile testing using a phase-sensitive photothermal technique. The contribution to the longitudinal thermal resistance from each of the cracks is determined from the longitudinal diffusivity along with measurements of crack density. By combining the transverse measurements with the predictions of an effective medium model, the thermal conductance of the interface (characterized by a Biot number) is determined and found to decrease with increasing crack opening displacement, from an initial value of ,1 to ,0.3. This degradation is attributed to the deleterious effects of interface sliding on the thermal conductance. Corroborating evidence of degradation in the interface conductance is obtained from the inferred crack conductances coupled with a unit cell model for a fiber composite containing a periodic array of matrix cracks. Additional notable features of the material behavior include: (i) reductions of ,20% in both the longitudinal and the transverse diffusivities at stresses near the ultimate strength, (ii) almost complete recovery of the longitudinal diffusivity following unloading, and (iii) essentially no change in the transverse diffusivity following unloading. The recovery of the longitudinal diffusivity is attributed to closure of the matrix cracks. By contrast, the degradation in the interface conductance is permanent, as manifest in the lack of recovery of the transverse diffusivity. [source]


Photoacoustic studies on two new organic NLO materials: L-threonine and L-prolinium tartrate

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 2 2007
S. A. Martin Britto Dhas
Abstract Photoacoustic spectroscopy (PAS) is a non-destructive testing (NDT) tool and used here for analyzing the physical properties such as thermal diffusivity, thermal diffusion length, thermal conductivity and thermal effusivity of L-Threonine and L-Prolinium tartrate. These two crystals belong to a group of recently developed NLO materials, in our laboratory. The single crystals of the two compounds were grown by using submerged seed solution growth method. Characterization of the crystals was made by using single crystal X-ray diffraction. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Microstructure Tailored Functionally Graded Alumina/Lanthanum Hexaaluminate Ceramics for Application as Thermal Barrier Coatings,

ADVANCED ENGINEERING MATERIALS, Issue 12 2009
Zahra Negahdari
The thermal and mechanical properties of a functionally graded lanthanum hexaaluminate-alumina ceramic are described. The gradation of functionality is based on different volume fraction of lanthanum hexaaluminate, varying from 0 to 80 vol% and corresponding porosity from 2 to 32 vol%. The highest volume fraction of lanthanum hexaaluminate enables a five time reduced thermal diffusivity as compared to alumina. The fracture toughness and elastic modulus is highest for a 20 vol% lanthanum hexaaluminate-alumina composite. [source]


An improved force-restore method for soil temperature prediction

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2008
Z. Gao
Summary The force-restore method originally developed to enable soil temperature predictions assumes that soil is uniform with depth (i.e. the vertical gradient of thermal diffusivity is zero in soil) and that thermal conduction is the only heat transfer mechanism necessary for prediction of soil temperature. These assumptions hamper the applicability of the force-restore method to many natural soil conditions. The main objective of this study is to revise the force-restore method by extending it to include the possibility of soil heterogeneity with depth (i.e. non-zero vertical gradient of thermal diffusivity in soil) and to include the possible occurrence of convective heat transfer as well as conductive heat transfer in soil. Soil temperatures calculated by the current and the revised force-restore methods for a shallow soil layer were compared with measured soil temperatures at a bare soil site in the China Loess Plateau from 22 to 26 July 2005. Results showed that the revised method improved on the current force-restore method, which overestimated either the diurnal amplitude or the phase shift for the shallow soil layer. These results indicate that the revised force-restore method is more applicable than the current force-restore method for predicting soil temperatures in naturally occurring non-uniform soil. The revised force-restore method has potential application within many land-atmosphere numerical models. [source]


Determination of upward/downward groundwater fluxes using transient variations of soil profile temperature: test of the method with Voyons (Aube, France) experimental data

HYDROLOGICAL PROCESSES, Issue 18 2005
Hocine Bendjoudi
Abstract The temperature variations recorded at several points of a vertical shallow-depth profile are governed both by conductive and convective heat transfers and can be used to calculate the vertical component of the Darcy velocity and thermal diffusivity in the soil. This paper describes such calculations when transient variations over tens of days are considered and tests them using data collected at Voyons (Aube, France). The temperature was recorded during a year and a half period with a 1 h sampling time step at three different depths: 0·2, 0·4 and 0·75 m. By processing the annual variation of temperature, we obtained a value of the Darcy velocity in good agreement with the value of actual/potential evapotranspiration ratio. By processing transient variations, despite the limitation of the calculations due to the lack of sensitivity of the sensors, results obtained at Voyons were in good correlation with tensiometric data. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Original article: Apparent thermal diffusivity estimation for the heat transfer modelling of pork loin under air/steam cooking treatments

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 9 2010
Massimiliano Rinaldi
Summary Apparent thermal diffusivity linear functions vs. product temperature were estimated for pork cooked under two different treatments (forced convection, FC and forced convection/steam combined, FC/S) at 100, 110, 120 and 140 °C by means of experimental time,temperature data and a developed finite-difference algorithm. Slope and intercept of each function were employed to calculate apparent thermal diffusivity at 40, 55 and 70 °C. Generally, FC/S treatments gave significantly higher apparent thermal diffusivities in comparison with FC conditions. Apparent thermal diffusivities were used to develop a model for cooking time and final core temperature prediction on the basis of oven setting. The model was validated by means of additional cooking tests performed at different temperatures of those employed for model development. Root mean square error values lower than 3.8 °C were obtained comparing predicted and experimental temperature profiles. Percentage errors lower than 3.1% and 3.5% were, respectively, obtained for cooking times and final core temperatures. [source]


GEOMETRICAL, THERMAL AND MECHANICAL PROPERTIES OF OLIVE FRUITS

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 2 2010
MOHAMAD I. AL-WIDYAN
ABSTRACT In Mediterranean countries, olive trees play a significant economical role. Knowledge of olive fruits properties is essential for the efficient handling of the product and optimizing oil yield. The lack of such knowledge at the local level triggered this study in an attempt to report the fruit's chemical composition and some major engineering properties. Established procedures were followed in conducting the measurements and calculations on fruit samples. The study examined four major varieties of olive fruits, including Spanish, Black Spanish, improved Nabali and Nabali Baladi for their chemical composition and other properties, including geometrical, thermal and frictional properties. Thermal properties, including thermal conductivity, heat capacity and thermal diffusivity, ranged from 0.41 to 0.47 W/(m·K), 2.35 to 2.39 kJ/(kg·K) and 2.88 × 10,7to 2.779 × 10,7 m2/s, respectively. The geometrical properties of the Spanish and Black Spanish were quite similar except for roundness and sphericity. Similar results were found for improved Nabali and Nabali Baladi. The properties of weight, density and packing coefficient ranged from 2.22 to 8.60 g, 890 to 1,230 kg/m3 and 0.43 to 0.52, respectively. The fruit's static friction coefficient over mild steel, aluminum and softwood surfaces ranged from 0.20 to 0.30, 0.21 to 0.29 and 0.22 to 0.33, respectively. PRACTICAL APPLICATIONS In Jordan and other Mediterranean countries, olive fruits are produced in large quantities every season. They are very widely used as pickled fruits or are processed in mills to extract their oil. Despite the fact that fruit properties are a necessary prerequisite for the efficient handling and processing of fruits, literature search indicated the lack of a comprehensive study of scientific merit that reports on the engineering properties of olive fruits. In addition, it is established that knowledge of the fruit properties leads to optimized handling and processing and results in knowledge-based development of all processes and equipment that deal with the fruits. The practical merit of this study stems from the fact that it reports on the key properties of a major product (olive fruits) that has social, cultural and economical significance throughout a whole region and is expanding throughout the globe. [source]


A NUMERICAL APPROACH WITH VARIABLE TEMPERATURE BOUNDARY CONDITIONS TO DETERMINE THE EFFECTIVE HEAT TRANSFER COEFFICIENT VALUES DURING BAKING OF COOKIES

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 5 2006
EREN DEMIRKOL
ABSTRACT The increasing trade of ready-to-eat foods such as cookies highlights an interest in quality defects during baking. Heat (h and thermal diffusivity) and mass (mass transfer and diffusion coefficients) transfer parameters are significant parameters affecting the quality changes. Therefore, it is important to determine these parameters for modeling and process optimization studies. Among these, the h is important, revealing the relationship between the heating medium and product surface. As baking involves a simultaneous heat and mass transfer involving moisture diffusion and heat conduction inside and convective heat and mass transfer outside, a lumped system method may not be an accurate choice to determine the h value. Changes in the product volume and contact heating from bottom of the product also bring extra challenges to the determination of h. Therefore, the objective of this study was to use realistic approaches including simultaneous heat and mass transfer to determine the changes in h. The heffvalues for the bottom and top surface of the cookies were then determined, applying a numerical procedure where the surface temperature changes were the boundary conditions with evaporation on the surface. The hband ht values increased with baking temperature and varied with baking time. The results of this study showed that evaporative mass flux for the top surface, heat flux for the bottom surface and the product's volume changes were significant in the variation of h values. [source]


THERMAL AND RHEOLOGICAL PROPERTIES OF BRINE FROM FERMENTED AND SULFITE-PRESERVED CUCUMBERS,

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 4 2002
O.O. FASINA
ABSTRACT Pickling cucumbers may be temporarily preserved by fermentation in brine (6,8% NaCl) or without fermentation in salt-free, sulfite solution (300 ppm sulfite, pH 3.5). Brines obtained from preservation processes are often discarded. Due to environmental concerns, there is increasing consideration for further use of the brine solutions by recycling for use in bulk storage or filtration and incorporation into finished products. Thermal and rheological properties are fundamental to the reuse of the brine. The effect of temperature was determined on the rheological (5,45C) and thermal properties (5,75C) of brine. The properties of the brine samples were found to be significantly different (P < 0.05) from each other and from water. Salt content was the most important factor affecting the thermal and rheological properties of brine. At the same conditions, the values of the properties (thermal conductivity, specific heat, and thermal diffusivity, viscosity) were about 5 to 23% less than the corresponding values for water. [source]


DYNAMIC MODELING OF RETORT PROCESSING USING NEURAL NETWORKS

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 2 2002
C. R. CHEN
ABSTRACT Two neural network approaches , a moving-window and hybrid neural network , which combine neural network with polynomial regression models, were used for modeling F(t) and Qv(t) dynamic functions under constant retort temperature processing. The dynamic functions involved six variables: retort temperature (116,132C), thermal diffusivity (1.5,2.3 × 10,7m2/s), can radius (40,61 mm), can height (40,61 mm), and quality kinetic parameters z (15,39C) and D (150,250 min). A computer simulation designed for process calculations of food thermal processing systems was used to provide the fundamental data for training and generalization of ANN models. Training data and testing data were constructed by both second order central composite design and orthogonal array, respectively. The optimal configurations of ANN models were obtained by varying the number of hidden layers, number of neurons in hidden layer and learning runs, and a combination of learning rules and transfer function. Results demonstrated that both neural network models well described the F(t) and Qv(t) dynamic functions, but moving-window network had better modeling performance than the hybrid ANN models. By comparison of the configuration parameters, moving-window ANN models required more neurons in the hidden layer and more learning runs for training than the hybrid ANN models. [source]


Measuring anisotropic thermal conduction in polyisobutylene following step shear strains

AICHE JOURNAL, Issue 3 2000
Hadjira Iddir
The connection between polymer chain orientation and several macroscopic properties in a polymer melt was studied using mechanical and optical techniques. Anisotropic thermal conductivity following shear deformation was measured using forced Rayleigh light scattering, the refractive index tensor is followed using birefringence measurements, and the stress was measured mechanically in a parallel-plate rheometer. The thermal diffusivity measured in the flow and neutral directions increased and decreased, respectively, immediately following the deformation. These quantities then relaxed to the equilibrium value on the time-scale of the stress-relaxation memory. Comparison of the difference between measured flow and neutral direction thermal diffusivities with the analogous flow-induced birefringence in the same deformation provided indirect evidence for a linear relation between stress and thermal diffusivity at two different values of strain. Mechanical measurements were used to characterize the memory of the fluid. [source]


Effect of Aluminum Oxide Addition on the Flexural Strength and Thermal Diffusivity of Heat-Polymerized Acrylic Resin

JOURNAL OF PROSTHODONTICS, Issue 6 2008
Ayman E. Ellakwa BDS
Abstract Purpose: This work was undertaken to investigate the effect of adding from 5% to 20% by weight aluminum oxide powder on the flexural strength and thermal diffusivity of heat-polymerized acrylic resin. Materials and Methods: Seventy-five specimens of heat-polymerized acrylic resin were fabricated. The specimens were divided into five groups (n = 15) coded A to E. Group A was the control group (i.e., unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with aluminum oxide (Al2O3) powder to achieve loadings of 5%, 10%, 15%, and 20% by weight. Specimens were stored in distilled water at 37°C for 1 week before flexural strength testing to failure (5 mm/min crosshead speed) in a universal testing machine. Results were analyzed by one-way analysis of variance and post hoc Tukey paired group comparison tests (p < 0.05). Weibull analysis was used to calculate the Weibull modulus, characteristic strength, and the required stress for 1% and 5% probabilities of failure. Cylindrical test specimens (5 specimens/group) containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). Results: The mean flexural strength values of the heat-polymerized acrylic resin were (in MPa) 99.45, 119.92, 121.19, 130.08, and 127.60 for groups A, B, C, D, and E, respectively. The flexural strength increased significantly after incorporation of 10% Al2O3. The mean thermal diffusivity values of the heat-polymerized acrylic resin (in m2/sec) were 6.8, 7.2, 8.0, 8.5, and 9.3 for groups A, B, C, D, and E, respectively. Thermal diffusivities of the composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler, which suggested that the proper distribution of alumina powders through the insulating polymer matrix might form a pathway for heat conduction. Conclusion: Al2O3 fillers have potential as added components in denture bases to provide increased flexural strength and thermal diffusivity. Increasing the flexural strength and heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction. [source]


Sintering Behavior of Gehlenite.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2007
Macro-/Mesoporous Gehlenite, Mechanical, Microstructure, Part I: Self-Forming, Physical Properties, Pore-Forming Mechanism
A novel kind of pore self-forming macro-/mesoporous gehlenite (2CaO·Al2O3·SiO2) ceramic (abbreviated C2AS) having a highest porosity of 80% corresponding to a volume expansion of 134% during sintering has been developed. The pore self-forming ability, microstructure, mechanical, and thermal physical properties of the porous ceramic are related to the sintering temperature. The gehlenite ceramic shows a very good pore self-forming ability over a very wide range of temperature from 900° to 1450°C. No vesicant is required and no hydrothermal treatment is needed, as is generally the case for other kinds of porous ceramics or glasses. The pore self-forming ability of the C2AS porous ceramic can be attributed to the escape of the adsorbed water vapor during the sintering process, due to automatic hydration of the fine, amorphous, flakey-shaped starting C2AS powder particles synthesized by the organic steric entrapment (PVA) method, as well as to their fine, porous microstructure. The pores of the ceramics can be either open or closed, and the average pore size ranges from 0.6 to 1.1 ,m, corresponding to a porosity of 75%,80%, respectively. The porous ceramic can preserve nanometer-sized (26,50 nm) crystallites up to 1000°C. Sintered or thermally treated under different conditions, the porous ceramics exhibit relatively high flexural strengths ranging from 9.1 to 15.4 MPa, with a standard deviation of 0.3 and 4.2 MPa, respectively. Thermal properties of the porous ceramic up to 1000°C, including thermal expansion coefficient, thermal diffusivity, specific heat, and thermal conductivity, were investigated, and the stability of the porous ceramic in boiling water was also studied. [source]


Physical properties of rocks from the upper part of the Yaxcopoil-1 drill hole, Chicxulub crater

METEORITICS & PLANETARY SCIENCE, Issue 6 2004
Y. Popov
Thermal conductivity, thermal diffusivity, density, and porosity were measured on 120 dry and water-saturated rocks with a core sampling interval of 2,2.5 m. Nondestructive, non-contact optical scanning technology was used for thermal property measurements including thermal anisotropy and inhomogeneity. Supplementary petrophysical properties (acoustic velocities, formation resisitivity factor, internal surface, and hydraulic permeability) were determined on a selected subgroup of representative samples to derive correlations with the densely measured parameters, establishing estimated depth logs to provide calibration values for the interpretation of geophysical data. Significant short- and long-scale variations of porosity (1,37%) turned out to be the dominant factor influencing thermal, acoustic, and hydraulic properties of this post impact limestone formation. Correspondingly, large variations of thermal conductivity, thermal diffusivity, acoustic velocities, and hydraulic permeability were found. These variations of physical properties allow us to subdivide the formation into several zones. A combination of experimental data on thermal conductivity for dry and water-saturated rocks and a theoretical model of effective thermal conductivity for heterogeneous media have been used to calculate thermal conductivity of mineral skeleton and pore aspect ratio for every core under study. The results on thermal parameters are the necessary basis for the determination of heat flow density, demonstrating the necessity of dense sampling in the case of inhomogeneous rock formations. [source]


Thermal characterisation of active layer across a soil moisture gradient in the McMurdo Dry Valleys, Antarctica

PERMAFROST AND PERIGLACIAL PROCESSES, Issue 1 2009
Scott J. Ikard
Abstract Heat transport into active layer soils is important to understanding potential responses to changes in surface energy balance, particularly in the context of changing climate. Here we present results of a study to characterise soil thermal properties along a soil moisture gradient adjacent to Lake Fryxell in Taylor Valley, Antarctica. Our goals were to characterise the thermal characteristics of these relatively wet soils (compared to the rest of the McMurdo Dry Valleys landscape), and to assess the response of the active layer to possible increases in soil moisture. We measured subsurface temperatures at depths from 3 to 50,cm at four locations along a natural gradient of wet to dry soils adjacent to Lake Fryxell from January 2006 to January 2007. We used a numerical model to estimate apparent thermal diffusivity (ATD) and simulate observed temperature time series. Calculations of ATD at discrete locations yielded values ranging from 1.0,×,10,9 , 2.4,×,10,5,m2,s,1, and the corresponding range of bulk (i.e. depth averaged at a single surface location) ATD was 2.9,×,10,9,1.2,×,10,7,m2,s,1. Thawed soils had a range of bulk ATD during warming of 2.9,×,10,9,3.8,×,10,8,m2,s,1, and during cooling of 2.9,×,10,9,4.8,×,10,8,m2,s,1. When soils were frozen, however, the range of bulk ATD was 7.6,×,10,9,1.2,×,10,7,m2,s,1 during warming, and 7.8,×,10,9,1.1,×,10,7,m2,s,1 during cooling. Estimated bulk ATD values were consistently greater in locations of enhanced soil moisture, so lakeside soils were more likely to conduct energy into the subsurface. Increased soil moisture across the landscape would likely increase ATD, allowing for greater heat exchange between the atmosphere and the subsurface. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Ground thermal conditions in a frost-crack polygon, a palsa and a mineral palsa (lithalsa) in the discontinuous permafrost zone, northern Sweden

PERMAFROST AND PERIGLACIAL PROCESSES, Issue 4 2001
Bo Westin
Abstract Ground temperature measurements were collected during 1997 to 1998 at three locations in the discontinuous permafrost zone in northern Sweden. Measurements were made in two frost-crack polygons, two palsas and a mineral palsa (lithalsa). Important for the formation of permafrost at all locations are (i) the absence of snow and, (ii) local soil properties. The seasonal variation in apparent thermal diffusivity,with higher diffusivities in summer than in winter in the mineral soil of the frost-crack polygon and relatively little seasonal variation in the peat of the palsas,is the main cause for the cooler conditions in the palsas in summer. Morphology adds to the temperature fluctuations as indicated by highly fluctuating ground temperatures in the dome-shaped mineral palsa as compared to the frost-crack polygon. Occasional ground temperature gradients of more than ,10 °C/m are probably sufficient for seasonal frost cracking. Copyright © 2001 John Wiley & Sons, Ltd. RÉSUMÉ En trois endroits de la zone du pergélisol discontinu, Staloluokta, Kisuris, et Laivadalen dans le nord de la Suède où les températures moyennes annuelles sont d'environ,0.9°C, des mesures de température du sol ont été réalisées jusqu'à des profondeurs de 125 cm dans deux polygones de fissures de gel, deux palses et une palse minérale (lithalse). Le facteur le plus important pour la formation du pergélisol en tous les sites étudiés paraît être l'absence de couverture neigeuse et secondairement les propriétés des sols. Le pergélisol a été trouvé dans les sols des polygones de fissures de gel, dans les palses et la palse minérale, en des endroits où probablement une faible couverture de neige existe en hiver. La variation saisonnière de la diffusivité thermique apparente,avec une plus grande diffusivité en été qu'en hiver dans le sol minéral du polygone de fissure de gel et relativement peu de variations saisonnières dans la tourbe des palses,a été la cause principale des conditions plus froides dans la palse en hiver. La morphologie des formes périglaciaires peut engendrer des fluctuations de température plus importantes comme l'indique la grande variation de la température du sol dans une palse minérale en forme de dôme par comparaison avec ce qui se produit dans un polygone de fissures de gel de la même région. En outre, des gradients de température de plus de 10°C/m dans le sol gelé de la majeure partie des formes étudiées ont été probablement suffisants pour permettre la fissuration par contraction thermique. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Thermoelectric and thermal properties of AlInN thin films prepared by reactive radio-frequency sputtering

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 2 2004
Shigeo Yamaguchi
Abstract We have studied the thermoelectric and thermal properties of AlInN targeting a thermoelectric device using nitrides. In a Al0.57In0.43N thin film, we obtained a minimum value of of 2.2 × 10,6 m2/s for thermal diffusivity and a maximum value of 1.8 × 10,4 W/mK2 for power factor. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Measurements of the thermal conductivity and thermal diffusivity of polymers

POLYMER ENGINEERING & SCIENCE, Issue 11 2003
Xing Zhang
In this paper, the thermal conductivity and thermal diffusivity of nine polymers were measured by using the transient short-hot-wire method. The corresponding specific heat was measured with a commercial Differential Scanning Calorimeter (DSC). The effects of temperature on the thermal conductivity, thermal diffusivity, and the product of density and specific heat are further discussed. The results show that the transient short-hot-wire method can be used to measure the thermal conductivity, thermal diffusivity, and the product of density and specific heat of polymers within uncertainties of 3%, 6%, and 9%, respectively. [source]


Multiphase flow at the edge of a steam chamber

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2010
Jyotsna Sharma
Abstract The use of steam-assisted gravity drainage (SAGD) to recover bitumen from Athabasca deposits in Alberta has been growing. Butler [Butler, J. Can. Pet. Tech. 1985;24:42,51] derived a simple theory to calculate the production rate of oil during SAGD in an ideal reservoir. This simple and useful theory made several assumptions about the properties of the reservoir and operating conditions of the process. The theory also assumed that the highest mobility oil is at the edge of the steam chamber and that the oil phase velocity is highest at the chamber edge and reduces with distance into the oil sand. This research examines flow conditions at the edge of the steam chamber. Specifically, a new theory is derived that takes into account the impact of oil saturation and relative permeability on the oil mobility profile at the edge of a steam chamber. It is shown that the flow behaviour at the edge of a steam chamber is more complex and is not fully represented by Butler's theory. Contrary to Butler's theory, the oil mobility has its maximum some distance away from the edge of the steam chamber. The results reveal that the higher the thermal diffusivity of the oil sand, the deeper the location where the oil phase velocity is maximum. The developed model has been validated against published experimental and field data. On a enregistré une forte augmentation de l'utilisation du procédé de drainage gravitaire en présence de vapeur (technique SAGD) pour récupérer le bitume naturel des gisements de l'Athabasca, Alberta. Butler (1985) a mis en place une théorie simple pour calculer le taux de production de pétrole durant l'utilisation de la technique SAGD dans un réservoir idéal. Cette théorie simple et utile fait plusieurs hypothèses sur les propriétés du réservoir et les conditions opératoires du processus. La théorie suppose également que le pétrole ayant la mobilité la plus élevée se trouve au bord de la chambre de vapeur et que la vélocité de la phase huileuse est à son niveau le plus élevé au niveau du bord de la chambre et qu'elle diminue ensuite avec la distance à l'intérieur des sables bitumineux. Ce travail de recherche examine les conditions d'écoulement au niveau des bords de la chambre de vapeur. De façon plus spécifique, une nouvelle théorie est mise en place en tenant compte de l'impact de la saturation en pétrole et de la perméabilité relative sur le profil de mobilité du pétrole au niveau des bords de la chambre de vapeur. On montre que le comportement de l'écoulement au niveau des bords d'une chambre de vapeur est plus complexe que prévu et qu'il n'est totalement représenté par la théorie de Butler. Contrairement à la théorie de Butler, la mobilité du pétrole présente son maximum à une certaine distance à l'écart des bords de la chambre de vapeur. Les résultats révèlent que plus la diffusivité thermique des sables bitumeux est élevée, plus le lieu de vélocité maximale de la phase huileuse est profond. Le modèle développé a été validé contre des données expérimentales publiées et des données obtenues sur le terrain. [source]