Thermal Contraction (thermal + contraction)

Distribution by Scientific Domains


Selected Abstracts


Synthesis, Structure and Thermal Contraction of a New Low-Temperature Polymorph of ZrMo2O8.

CHEMINFORM, Issue 48 2003
Simon Allen
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


Esterification of n -butyric acid with n -butyl alcohol and transesterification of (R,,S)-phenylethanol by lipase immobilized on cellulose acetate,TiO2 gel fibre

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 1 2002
Yuko Ikeda
Abstract Lipase (EC 3.1.1.3) was immobilized on cellulose acetate,TiO2 gel fibre by the sol,gel method. The immobilized lipases were used for esterification of n -butyric acid with n -butyl alcohol and enantioselective acylation of (R, S)-phenylethanol using vinyl acetate as an acyl donor. Compared with native lipase, the activity of the immobilized lipase was stable and relatively unaffected by the water content of the solvent and the substrate concentration. The data indicate that the lipases are immobilized on the fibre surface and that enzyme activity is influenced by bound water. However, the thermal reactivity and enantioselectivity of the immobilized lipase were less than those of native lipase. This may not reflect thermal inactivation of the enzyme but rather significant thermal contraction of the gel fibre by cellulose crystallization, resulting in liberation of bound water and a decrease in the amount of enzyme which is available for the reaction. Copyright © 2001 Society of Chemical Industry [source]


Progress in rational methods of cryoprotection in macromolecular crystallography

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2010
Thomas Alcorn
Cryogenic cooling of macromolecular crystals is commonly used for X-ray data collection both to reduce crystal damage from radiation and to gather functional information by cryogenically trapping intermediates. However, the cooling process can damage the crystals. Limiting cooling-induced crystal damage often requires cryoprotection strategies, which can involve substantial screening of solution conditions and cooling protocols. Here, recent developments directed towards rational methods for cryoprotection are described. Crystal damage is described in the context of the temperature response of the crystal as a thermodynamic system. As such, the internal and external parts of the crystal typically have different cryoprotection requirements. A key physical parameter, the thermal contraction, of 26 different cryoprotective solutions was measured between 294 and 72,K. The range of contractions was 2,13%, with the more polar cryosolutions contracting less. The potential uses of these results in the development of cryocooling conditions, as well as recent developments in determining minimum cryosolution soaking times, are discussed. [source]


The role of solvent transport in cryo-annealing of macromolecular crystals

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2004
Douglas H. Juers
Macromolecular crystals are usually cooled to ,100,K for X-ray diffraction experiments in order to diminish lattice damage arising from the ionizing radiation. Such cooling often produces lattice disorder, but this disorder can sometimes be substantially reduced by cycling the crystal between low and higher temperatures (called annealing). Here, two related aspects of cryocooling and annealing are investigated using crystals of ,-galactosidase and thermolysin. Firstly, as has been reported with other systems, there is an optimal cryoprotectant concentration above and below which diffraction is poor, with high mosaicity, diffuse scatter and low signal to noise. Measurements of the bulk density of the respective cryosolvents are consistent with the idea that at the optimal cryoprotectant concentration the contraction of the bulk solvent on cooling largely compensates for the contraction of the macromolecular lattice. Secondly, by controlling the relative humidity of the gas that contacts the crystal during the high (room) temperature phase, it is found that water is either imported into or exported out of the crystals during the melting phase of annealing. This water transport appears to change the concentration of the cryoprotectant solution and in so doing alters its thermal contraction. Thus, annealing appears to be involved, at least in part, in the tuning of the thermal contraction of the bulk solvent to best compensate for lattice contraction. Furthermore, it is found that if the cryoprotectant concentration is initially too high then annealing is more successful than if the concentration is initially too low. This result suggests that the search for optimal cryoprotectant conditions may be facilitated by equilibration of the crystal to relatively high cryoprotectant concentration followed by annealing. [source]


Thermal properties of lightweight-framed construction components at elevated temperatures

FIRE AND MATERIALS, Issue 3 2005
Noureddine Bénichou
Abstract Fire resistance behaviour of lightweight-framed assemblies is determined by defining the thermal and structural performances of the assembly when exposed to fire. To adequately model thermal behaviour in a lightweight wood-framed assembly, thermal properties of the components of the assembly at elevated temperatures must be well defined. This paper presents results of measurements of thermal properties at elevated temperatures of construction materials commonly used to build lightweight wood-framed assemblies that were conducted at the National Research Council of Canada since 1990. The test results, in graphical form, are given as a function of temperature for thermal conductivity, specific heat, mass loss and thermal expansion/contraction for wood, gypsum and insulation. In addition, the effects of temperature on the thermal conductivity, specific heat, mass loss and thermal expansion/contraction of these materials are discussed. Finally, in addition to providing a resource of information, this paper also identifies the additional thermal property tests required to complete the matrix of information. Copyright © 2005 Crown in the right of Canada. Published by John Wiley & Sons, Ltd. [source]