Home About us Contact | |||
Therapeutic Compounds (therapeutic + compound)
Selected AbstractsIn vivo analysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: A feasibility studyINFLAMMATORY BOWEL DISEASES, Issue 7 2010Angeleen Fleming PhD Abstract Background: The aim of this study was to develop a model of inflammatory bowel disease (IBD) in zebrafish larvae, together with a method for the rapid assessment of gut morphology and function in vivo thereby enabling medium-throughput compound screening. Methods: Assays were performed using larval zebrafish from 3,8 days postfertilization (d.p.f.) in 96-well plates. Gut morphology and peristalsis were observed in vivo using fluorescent imaging following ingestion of fluorescent dyes. IBD was induced by addition of 2,4,6-trinitrobenzenesulfonic acid (TNBS) to the medium within the well. Pathology was assessed in vivo using fluorescent imaging and postmortem by histology, immunohistochemistry, and electron microscopy. Therapeutic compounds were evaluated by coadministration with TNBS. Results: A novel method of investigating gut architecture and peristalsis was devised using fluorescent imaging of live zebrafish larvae. Archetypal changes in gut architecture consistent with colitis were observed throughout the gut. Significant changes in goblet cell number and tumor necrosis factor alpha (TNF-,) antibody staining were used to quantify disease severity and rescue. Prednisolone and 5-amino salicylic acid treatment ameliorated the disease changes. Candidate therapeutic compounds (NOS inhibitors, thalidomide, and parthenolide) were assessed and a dissociation was observed between efficacy assessed using a single biochemical measure (TNF-, staining) versus an assessment of the entire disease state. Conclusions: Gut physiology and pathology relevant to human disease state can be rapidly modeled in zebrafish larvae. The model is suitable for medium-throughput chemical screens and is amenable to genetic manipulation, hence offers a powerful novel premammalian adjunct to the study of gastrointestinal disease. (Inflamm Bowel Dis 2010) [source] Antiadhesion molecule therapy in inflammatory bowel diseaseINFLAMMATORY BOWEL DISEASES, Issue 4 2002Dr. Gert Van Assche Abstract Adhesion molecules regulate the influx of leukocytes in normal and inflamed gut. Some of these molecules such as MadCAM-1 are specific for the gastrointestinal endothelium, but in inflammatory bowel diseases most of the adhesion factors are up-regulated. Adhesion molecules also are involved in local lymphocyte stimulation and antigen presentation within the intestinal mucosa. Recently, therapeutic compounds directed against trafficking of lymphocytes toward the gut mucosa have been designed, and are being developed as a novel class of drugs in the treatment of Crohn's disease (CD) and ulcerative colitis. This review deals with the immunological aspects of leukocyte trafficking focused on gut homing of T cells. Secondly, the changes in adhesion molecules and T-cell trafficking during intestinal inflammation are discussed. Finally, we review the clinical data that have been gathered in trials of biological therapies directed against adhesion molecules. Both antiintercellular adhesion molecule-1 (ICAM-1) and anti-,4 integrin strategies are being developed. Trials with the anti-ICAM-1 antisense oligonucleotide, ISIS-2302, in steroid-refractory CD have provided conflicting efficacy data. The anti-,4 integrin antibodies natalizumab (Antegren) and LDP-02 are in phase III and phase II trials, respectively. In the near future, these novel biological agents may prove valuable therapeutic tools in the management of refractory IBD. [source] Biomedical applications of protein chipsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2002Jocelyn H. Ng Abstract The development of microchips involving proteins has accelerated within the past few years. Although DNA chip technologies formed the precedent, many different strategies and technologies have been used because proteins are inherently a more complex type of molecule. This review covers the various biomedical applications of protein chips in diagnostics, drug screening and testing, disease monitoring, drug discovery (proteomics), and medical research. The proteomics and drug discovery section is further subdivided to cover drug discovery tools (on-chip separations, expression profiling, and antibody arrays), molecular interactions and signaling pathways, the identification of protein function, and the identification of novel therapeutic compounds. Although largely focused on protein chips, this review includes chips involving cells and tissues as a logical extension of the type of data that can be generated from these microchips. [source] Rating of CCl4 -induced rat liver fibrosis by blood serum glycomicsJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7 2007Liesbeth Desmyter Abstract Background:, Non-invasive staging of human liver fibrosis is a desirable objective that remains under extensive evaluation. Animal model systems are often used for studying human liver disease and screening antifibrotic compounds. The aim of the present study was to investigate the potential use of serum N-glycan profiles to evaluate liver fibrosis in a rat model. Methods:, Liver fibrosis and cirrhosis were induced in rats by oral administration of CCl4. Liver injury was assessed biochemically (alanine aminotransferase [ALT] activity, aspartate aminotransferase [AST] activity and total bilirubin) and histologically. The N-glycan profile (GlycoTest) was performed using DNA sequencer-assisted,fluorophore-assisted carbohydrate electrophoresis technology. In parallel, the effect of cotreatment with antifibrotic interferon-, (IFN-,) was studied. Results:, The biopsy scoring system showed that CCl4 induced early fibrosis (F < 1,2) in rats after 3 weeks of treatment, and cirrhosis (F4) after 12 weeks. Significant increases in ALT activity, AST activity and total bilirubin levels were detected only after 12 weeks of CCl4 treatment. GlycoTest showed three glycans were significantly altered in the CCl4 -goup. Peak 3 started at week 6, at an early stage in fibrosis development (F < 1,2), whereas peaks 4 and 5 occurred at week 9, at which time mild liver fibrosis (F = 1,2) had developed. The changes in the CCl4 -IFN-, group were intermediate between the CCl4 - and the control groups. Conclusion:, The GlycoTest is much more sensitive than biochemical tests for evaluating liver fibrosis/cirrhosis in the rat model. The test can also be used as a non-invasive marker for screening and monitoring the antifibrotic activity of potential therapeutic compounds. [source] Innovations in oligonucleotide drug deliveryJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2003Melanie A. Lysik Abstract Oligonucleotides (ONs) are a new class of therapeutic compounds under investigation for the treatment of a variety of disease states, such as cancer and HIV, and for FDA approval of an anti-CMV retinitis antisense molecule (VitraveneÔ, Isis Pharmaceuticals). However, these molecules are limited not only by poor cellular uptake, but also by a general lack of understanding regarding the mechanism(s) of ON cellular uptake. As a result, various delivery vehicles have been developed that circumvent the proposed mechanism of uptake, endocytosis, while improving target specific delivery and/or drug stability. This review describes various traditional and novel delivery mechanisms that have been employed to improve ON cellular delivery, cost effectiveness, and therapeutic efficacy. © 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:1559,1573, 2003 [source] The bioavailability and absorption of anthocyanins: Towards a better understandingMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 6 2007Tony K. McGhie Abstract Evidence that anthocyanin compounds have beneficial effects for health are increasingly being reported in the scientific literature and these compounds are now widely recognised as potential therapeutic compounds. Berry fruit are rich sources of anthocyanins and berry fruit products or derived beverages can provide 10s to 100s of milligrams of anthocyanins in a single serve. Anthocyanins exhibit complex chemical behaviours in vitro and this will result in complex behaviour in vivo. This review attempts to summarize some aspects of anthocyanin biochemistry and discusses these in the context of what is currently known about bioavailability and absorption. Compared with other flavonoid groups, such as flavonols, relatively little is known about details and mechanisms of anthocyanin absorption and transport and much remains to be discovered. [source] Purification, crystallization and preliminary X-ray analysis of Enterococcus casseliflavus aminoglycoside-2,,-phosphotransferase-IVaACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 1 2010Marta Toth The deactivation of aminoglycoside antibiotics by chemical modification is one of the major sources of bacterial resistance to this family of therapeutic compounds, which includes the clinically relevant drugs streptomycin, kanamycin and gentamicin. The aminoglycoside phosphotransferases (APHs) form one such family of enzymes responsible for this resistance. The gene encoding one of these enzymes, aminoglycoside-2,,-phosphotransferase-IVa [APH(2,,)-IVa] from Enterococcus casseliflavus, has been cloned and the protein (comprising 306 amino-acid residues) has been expressed in Escherichia coli and purified. The enzyme was crystallized in three substrate-free forms. Two of the crystal forms belonged to the orthorhombic space group P212121 with similar unit-cell parameters, although one of the crystal forms had a unit-cell volume that was approximately 13% smaller than the other and a very low solvent content of around 38%. The third crystal form belonged to the monoclinic space group P21 and preliminary X-ray diffraction analysis was consistent with the presence of two molecules in the asymmetric unit. The orthorhombic crystal forms of apo APH(2,,)-IVa both diffracted to 2.2,Å resolution and the monoclinic crystal form diffracted to 2.4,Å resolution; synchrotron diffraction data were collected from these crystals at SSRL (Stanford, California, USA). Structure determination by molecular replacement using the structure of the related enzyme APH(2,,)-IIa is proceeding. [source] Efficacy of peritoneal dialysis of tolbutamide in rats under conditions of the plasma unbound fraction being increasedBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 1 2009Takashi Makita Abstract Peritoneal dialysis of a highly protein-bound compound, tolbutamide, was examined in rats to clarify whether the efficacy of the peritoneal dialysis of such compounds increases proportionally as their unbound fractions increase. As expected, it was shown that the tolbutamide concentration of the peritoneal dialysate rose as the unbound fraction of tolbutamide increased. However, the efficacy of peritoneal dialysis of tolbutamide was proportionally elevated only when the unbound fraction was slightly increased by sulfamethoxazole treatment. When the unbound fraction of tolbutamide was increased 7.8 times by sulfadimethoxine treatment, the dialysis efficacy was increased to only 58% of that expected. This discrepancy between the observed and expected values regarding dialysis efficacy was more marked when experiments were performed in rats with experimentally induced acute renal failure. Pharmacokinetic analysis indicated that the intrinsic dialysis clearance of tolbutamide decreased when its unbound fraction was greatly increased. These findings suggest that peritoneal dialysis may be mediated not only by passive diffusion, but also by concentration-dependent processes. The efficacy of the peritoneal dialysis of therapeutic compounds may be overestimated if the estimation is based only on their unbound fraction measured under control conditions. Copyright © 2009 John Wiley & Sons, Ltd. [source] |