Home About us Contact | |||
Theoretical Yield (theoretical + yield)
Selected AbstractsNitrogen-Rich Compounds of the Lanthanoids: The 5,5,-Azobis[1H -tetrazol-1-ides] of some Yttric Earths (Tb, Dy, Ho, Er, Tm, Yb, and Lu)HELVETICA CHIMICA ACTA, Issue 7 2009Georg Steinhauser Abstract A set of N-rich salts, 3,9, of the heavy lanthanoids (terbium, 3; dysprosium, 4; holmium 5; erbium, 6; thulium, 7; ytterbium, 8; lutetium, 9) based on the energetic 5,5,-azobis[1H -tetrazole] (H2ZT) was synthesized and characterized by elemental analysis, vibrational (IR and Raman) spectroscopy, and X-ray structure determination. The synthesis of the lanthanoid salts 3,9 was performed by crystallization from concentrated aqueous solutions of disodium 5,5,-azobis[1H -tetrazol-1-ide] dihydrate (Na2ZT,2,H2O; 1) and the respective Ln(NO3)3,5,H2O and yielded large rhombic crystals of the type [Ln(H2O)8]2(ZT)3,6,H2O in ca. 70% of the theoretical yield. The compounds 3,9 are isostructural (triclinic space group P) to the previously published yttrium salt 2; they show, however, a clear lanthanoid contraction of several crystallographic parameters, e.g., the cell volume or the LnO bond lengths of the Ln3+ ions and the coordinating H2O molecules. The lanthanoid contraction influences the strengths of the H-bonds, which can be observed as a red shift by 4,cm,1 in the characteristic IR band, in particular from 3595,cm,1 (3) to 3599,cm,1 (9). In good agreement with previous works, 2,9 are purely salt-like compounds without a coordinative bond between the tetrazolide anion and the Ln3+ cation. [source] Bioethanol production from bio- organosolv pulps of Pinus radiata and Acacia dealbataJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 8 2007Claudio Muñoz Abstract Wood chips from Pinus radiata and Acacia dealbata were pretreated with the white-rot fungi Ceriporiopsis subvermispora and Ganoderma australe, respectively, for 30 days at 27 °C and 55% relative humidity, followed by an organosolv delignification with 60% ethanol solution at 200 °C for 1 h to produce pulps with high cellulose and low lignin content. Biotreatment for 30 days was chosen based on low weight and cellulose losses (lower than 4%) and lignin degradation higher than 9%. After organosolv delignification, pulp yield for P. radiata and A. dealbata pulps was 45,49% and 31,51%, respectively. P. radiata bio-pulps showed higher glucan (93%) and lower lignin content (6%) than control pulps (82% glucan and 13% lignin). A. dealbata bio-pulps also showed higher glucan (95%) and lower lignin content (2%) than control pulps (92% glucan and 4% lignin). Pulp suspensions at 2% consistency were submitted either to separate enzymatic hydrolysis and fermentation (SHF) or simultaneous enzymatic saccharification and fermentation (SSF) for bioethanol production. The yeast Saccharomyces cerevisiae was used for fermentation. Glucan-to-glucose conversion in the enzymatic hydrolysis of control and bio-pulps of P. radiata was 55% and 100%, respectively, and it was 100% for all pulp samples case of A. dealbata. The highest ethanol yield (calculated as percentage of theoretical yield) during SHF of P. radiata control and bio-pulps was 38% and 55%, respectively, and for A. dealbata control and bio-pulps 62% and 69%, respectively. The SSF of P. radiata control and bio-pulps yielded 10% and 65% of ethanol, respectively, and 77% and 82% for A. dealbata control and bio-pulps, respectively. In wood basis, the maximum conversion obtained (g ethanol per kg wood) in SHF was 37% and 51% (for P. radiata and A. dealbata pulps, respectively) and 44% and 65% in SSF (for P. radiata and A. dealbata pulps, respectively) regarding the theoretical yield. The low wood-to-ethanol conversion was associated with low pulp yield (A. dealbata pulps), high residual lignin amount (P. radiata pulps) and the low pulp consistency (2%) used for SHF and SSF. Copyright © 2007 Society of Chemical Industry [source] Multivariable real-time optimal control of a cooling and antisolvent semibatch crystallization processAICHE JOURNAL, Issue 10 2009Milana Trifkovic Abstract This article presents an experimental study of simultaneous optimization with respect to two variables (cooling rate and flow-rate of antisolvent) in an offline and online (real-time) manner on a semibatch crystallizer. The nucleation and growth kinetic parameters of paracetamol in an isopropanol-water cooling, antisolvent batch crystallizer were estimated by nonlinear regression in terms of the moments of the crystal population density. Moments of crystal population were estimated from the measured chord length distribution, generated by the FBRM®, and the supersaturation was calculated from the measured concentration by attenuated total reflectance-fourier transform infrared spectroscopy. The results of real-time optimization showed a substantial improvement of the end of batch properties (the volume-weighted mean size and yield). For the same objective function, the real-time optimization method resulted in an increase in the volume-weighted mean size by ,100 ,m and 15% of theoretical yield compared with the best result obtained in an offline optimization manner. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Phase Morphology in Electrospun Zirconia MicrofibersJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2008Erin Davies Electrospinning of sol,gels has been used to produce zirconium-doped polymer microfibers from zirconyl chloride and poly(vinylpyrollidone) precursors. Calcination of these structures between temperatures of 370° and 930°C resulted in the formation of zirconia nanograined microfibers whose diameters ranged from 1200 to 800 nm at the higher temperatures and whose average grain size ranged from 9 to 33 nm. X-ray diffraction analysis revealed varying amounts of monoclinic and tetragonal zirconia present in the fibers and established how this varied with calcination temperature and time. The tetragonal phase was shown to be unstable and disappeared on heating the material beyond around 750°C. The amount of zirconia yielded from the precursor material was measured and was found to be consistently greater than the theoretical yield. Average grain size within the microfibers increased with increasing calcination temperature and is effectively doubled when a 10 kPa pressure was applied. The effect of pressure also results in the creation of new crystal structures within the nanofibers and, as with traditional zirconia processing, the addition of impurity ions was found to stabilize the tetragonal phase. [source] Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanolBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2010Chandraraj Krishnan Abstract Sugarcane is one of the major agricultural crops cultivated in tropical climate regions of the world. Each tonne of raw cane production is associated with the generation of 130,kg dry weight of bagasse after juice extraction and 250,kg dry weight of cane leaf residue postharvest. The annual world production of sugarcane is ,1.6 billion tones, generating 279 MMT tones of biomass residues (bagasse and cane leaf matter) that would be available for cellulosic ethanol production. Here, we investigated the production of cellulosic ethanol from sugar cane bagasse and sugar cane leaf residue using an alkaline pretreatment: ammonia fiber expansion (AFEX). The AFEX pretreatment improved the accessibility of cellulose and hemicelluloses to enzymes during hydrolysis by breaking down the ester linkages and other lignin carbohydrate complex (LCC) bonds and the sugar produced by this process is found to be highly fermentable. The maximum glucan conversion of AFEX pretreated bagasse and cane leaf residue by cellulases was ,85%. Supplementation with hemicellulases during enzymatic hydrolysis improved the xylan conversion up to 95,98%. Xylanase supplementation also contributed to a marginal improvement in the glucan conversion. AFEX-treated cane leaf residue was found to have a greater enzymatic digestibility compared to AFEX-treated bagasse. Co-fermentation of glucose and xylose, produced from high solid loading (6% glucan) hydrolysis of AFEX-treated bagasse and cane leaf residue, using the recombinant Saccharomyces cerevisiae (424A LNH-ST) produced 34,36,g/L of ethanol with 92% theoretical yield. These results demonstrate that AFEX pretreatment is a viable process for conversion of bagasse and cane leaf residue into cellulosic ethanol. Biotechnol. Bioeng. 2010;107: 441,450. © 2010 Wiley Periodicals, Inc. [source] Enantioselective oxidation of 2-hydroxy carboxylic acids by glycolate oxidase and catalase coexpressed in methylotrophic Pichia pastorisBIOTECHNOLOGY PROGRESS, Issue 3 2010Shuvendu Das Abstract Glycolate oxidase (GO; (S)-2-hydroxyacid oxidase, EC 1.1.3.15) is a flavin mononucleotide (FMN)-dependent enzyme, which catalyzes the oxidation of 2-hydroxy carboxylic acids to the corresponding 2-keto acids. Catalase has been used as cocatalyst to decompose hydrogen peroxide produced in the reaction, thus limiting peroxide-based side reactions and GO deactivation. GO from spinach and catalase T from Saccharomyces cerevisiae previously coexpressed in Pichia pastoris strain NRRL Y-21001, was permeabilized and used for the oxidation of 3-phenyllactic acid, 3-indolelactic acid, 3-chlorolactic acid, 2-hydroxybutanoic acid, and 2-hydroxydecanoic acid to demonstrate high degree of selectivity to the (S)-enantiomers, leaving (R)-isomers intact. The rates of oxidation ranged from 1.3 to 120.0%, relative to the oxidation of lactic acid to pyruvic acid. The best substrates were 3-chlorolactic acid (110%) and 2-hydroxybutanoic acid (120%). Oxidation was carried out with (R)-, (S)-, and (RS)-3-phenyllactic acid, (RS)-lactic acid, and (RS)-2-hydroxybutanoic acid in 500 mL scale to characterize the products and stoichiometry of the reaction. All (RS)- and (S)-2-hydroxy acids produced 2-keto acids at close to the theoretical yield in 1,9 h. (R)-3-Phenyllactic acid was not oxidized over a period of 9 h. Addition of exogenous FMN and catalase were not required for this oxidation using double recombinant Pichia pastoris whole cells. As GO is absolutely specific to (S)-enantiomers, it can be used for resolution of racemic 2-hydroxy acids to (R)-2-hydroxy acids as well as for production of 2-keto acids. This is the first report on the selectivity of a broad range of 2-hydroxy acids by GO. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Importance of NADPH supply for improved L -valine formation in Corynebacterium glutamicumBIOTECHNOLOGY PROGRESS, Issue 2 2010Tobias Bartek Abstract Cofactor recycling is known to be crucial for amino acid synthesis. Hence, cofactor supply was now analyzed for L -valine to identify new targets for an improvement of production. The central carbon metabolism was analyzed by stoichiometric modeling to estimate the influence of cofactors and to quantify the theoretical yield of L -valine on glucose. Three different optimal routes for L -valine biosynthesis were identified by elementary mode (EM) analysis. The modes differed mainly in the manner of NADPH regeneration, substantiating that the cofactor supply may be crucial for efficient L -valine production. Although the isocitrate dehydrogenase as an NADPH source within the tricarboxylic acid cycle only enables an L -valine yield of YVal/Glc = 0.5 mol L -valine/mol glucose (mol Val/mol Glc), the pentose phosphate pathway seems to be the most promising NADPH source. Based on the theoretical calculation of EMs, the gene encoding phosphoglucoisomerase (PGI) was deleted to achieve this EM with a theoretical yield YVal/Glc = 0.86 mol Val/mol Glc during the production phase. The intracellular NADPH concentration was significantly increased in the PGI-deficient mutant. L -Valine yield increased from 0.49 ± 0.13 to 0.67 ± 0.03 mol Val/mol Glc, and, concomitantly, the formation of by-products such as pyruvate was reduced. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Sugar Recovery and Fermentability of Hemicellulose Hydrolysates from Steam-Exploded Softwoods Containing BarkBIOTECHNOLOGY PROGRESS, Issue 5 2001Abdel Boussaid The hemicellulose sugar recovery and ethanol production obtained from SO2 -catalyzed steam explosion of a mixed white fir (70%) and ponderosa pine (30%) feedstock containing bark (9% dry weight/dry weight) was assessed. More than 90% of the available hemicellulose sugars could be recovered in the hydrolysate obtained after steam explosion at 195 °C, 2.38 min, and 3.91% SO2, with 59% of the original hemicellulose sugars detected in a monomeric form. Despite this high sugar recovery, this hydrolysate showed low ethanol yield (64% of theoretical yield) when fermented with a spent sulfite liquor-adapted strain of Saccharomyces cerevisiae. In contrast, most hydrolysates prepared at higher steam explosion severity showed comparable or higher ethanol yields. Furthermore, the hydrolysates prepared from bark-free feedstock showed better fermentability (87% of theoretical yield) despite containing higher concentration of known inhibitors. The ethanol yield from the hydrolysate prepared from a bark-containing wood sample could be improved to 81% by an extra stage acid hydrolysis (121 °C for 1 h in 3% sulfuric acid). This extra stage acid hydrolysis and steam explosion at higher severity conditions seem to improve the fermentability of the hydrolysates by transforming certain inhibitory compounds present in the hydrolysates prepared from the bark-containing feedstock and thus lowering their inhibitory effect on the yeast used for the ethanol fermentation. [source] |