Thalamus

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Thalamus

  • bilateral thalamus
  • dorsal thalamus
  • leave thalamus
  • right thalamus


  • Selected Abstracts


    COGNITIVE SYNDROME OF THE THALAMUS: A MISLEADING DIFFERENTIAL DIAGNOSIS OF ALZHEIMER'S DISEASE

    JOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 10 2008
    Emilie Beaufils MD
    No abstract is available for this article. [source]


    Evidence for a Role of the Parafascicular Nucleus of the Thalamus in the Control of Epileptic Seizures by the Superior Colliculus

    EPILEPSIA, Issue 1 2005
    Karine Nail-Boucherie
    Summary:,Purpose: The aim of this study was to investigate whether the nucleus parafascicularis (Pf) of the thalamus could be a relay of the control of epileptic seizures by the superior colliculus (SC). The Pf is one of the main ascending projections of the SC, the disinhibition of which has been shown to suppress seizures in different animal models and has been proposed as the main relay of the nigral control of epilepsy. Methods: Rats with genetic absence seizures (generalized absence epilepsy rat from Strasbourg or GAERS) were used in this study. The effect of bilateral microinjection of picrotoxin, a ,-aminobutyric acid (GABA) antagonist, in the SC on the glutamate and GABA extracellular concentration within the Pf was first investigated by using microdialysis. In a second experiment, the effect of direct activation of Pf neurons on the occurrence of absence seizures was examined with microinjection of low doses of kainate, a glutamate agonist. Results: Bilateral injection of picrotoxin (33 pmol/side) in the SC suppressed spike-and-wave discharges for 20 min. This treatment resulted in an increase of glutamate but not GABA levels in the Pf during the same time course. Bilateral injection of kainate (35 pmol/side) into the Pf significantly suppressed spike-and-wave discharges for 20 min, whereas such injections were without effects when at least one site was located outside the Pf. Conclusions: These data suggest that glutamatergic projections to the Pf could be involved in the control of seizures by the SC. Disinhibition of these neurons could lead to seizure suppression and may be involved in the nigral control of epilepsy. [source]


    Habituation and Cross-Sensitization of Stress-Induced Hypothalamic-Pituitary-Adrenal Activity: Effect of Lesions in the Paraventricular Nucleus of the Thalamus or Bed Nuclei of the Stria Terminalis

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2002
    G. A. Fernandes
    Abstract Habituation of the hypothalamic-pituitary-adrenal (HPA) response to chronic intermittent restraint stress (30 min/day for 15 days) and the cross-sensitization to a heterotypic stress [i.p. lipopolysaccharide (LPS)] were investigated in intact male Sprague Dawley rats, and in rats bearing quinolinic acid lesions to the medial anterior bed nuclei of the stria terminalis (BST) or anterior region of the paraventricular nucleus of the thalamus (PVT). In intact animals, a single period of restraint increased plasma corticosterone levels at 30 min and led to an increase in corticotropin-releasing hormone (CRH) mRNA levels in the PVN at 3 h. LPS had a smaller effect on corticosterone and more variable effect on CRH mRNA. Chronic intermittent restraint stress caused a decrease in body weight and increase in adrenal weights, with concomitant increase in basal corticosterone levels. These animals also displayed marked habituation of the corticosterone and CRH mRNA responses to the homotypic stress of restraint, but no loss of the corticosterone response to the heterotypic stress of LPS and a cross-sensitization of the CRH mRNA response. This pattern of stress responses in control and chronically stressed animals was not significantly affected by lesions to the PVT or BST, two areas which have been implicated in the coping response to stress. Thus, these data provide evidence for independent adaptive mechanisms regulating HPA responses to psychological and immune stressors, but suggest that neither the medial anterior BST nor the anterior PVT participate in the mechanisms of habituation or cross-sensitization. [source]


    Somatosensory Nuclei of the Manatee Brainstem and Thalamus

    THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 9 2007
    Diana K. Sarko
    Abstract Florida manatees have an extensive, well-developed system of vibrissae distributed over their entire bodies and especially concentrated on the face. Although behavioral and anatomical assessments support the manatee's reliance on somatosensation, a systematic analysis of the manatee thalamus and brainstem areas dedicated to tactile input has never been completed. Using histochemical and histological techniques (including stains for myelin, Nissl, cytochrome oxidase, and acetylcholinesterase), we characterized the relative size, extent, and specializations of somatosensory regions of the brainstem and thalamus. The principal somatosensory regions of the brainstem (trigeminal, cuneate, gracile, and Bischoff's nucleus) and the thalamus (ventroposterior nucleus) were disproportionately large relative to nuclei dedicated to other sensory modalities, providing neuroanatomical evidence that supports the manatee's reliance on somatosensation. In fact, areas of the thalamus related to somatosensation (the ventroposterior and posterior nuclei) and audition (the medial geniculate nucleus) appeared to displace the lateral geniculate nucleus dedicated to the subordinate visual modality. Furthermore, it is noteworthy that, although the manatee cortex contains Rindenkerne (barrel-like cortical nuclei located in layer VI), no corresponding cell clusters were located in the brainstem ("barrelettes") or thalamus ("barreloids"). Anat Rec, 290:1138,1165, 2007. © 2007 Wiley-Liss, Inc. [source]


    Brain Blood-flow Alterations Induced by Therapeutic Vagus Nerve Stimulation in Partial Epilepsy: II.

    EPILEPSIA, Issue 9 2004
    Low Levels of Stimulation, Prolonged Effects at High
    Summary:,Purpose: To measure vagus nerve stimulation (VNS)-induced cerebral blood flow (CBF) effects after prolonged VNS and to compare these effects with immediate VNS effects on CBF. Methods: Ten consenting partial epilepsy patients had positron emission tomography (PET) with intravenous [15O]H2O. Each had three control scans without VNS and three scans during 30 s of VNS, within 20 h after VNS began (immediate-effect study), and repeated after 3 months of VNS (prolonged study). After intrasubject subtraction of control from stimulation scans, images were anatomically transformed for intersubject averaging and superimposed on magnetic resonance imaging (MRI) for anatomic localization. Changes on t-statistical maps were considered significant at p < 0.05 (corrected for multiple comparisons). Results: During prolonged studies, CBF changes were not observed in any regions that did not have CBF changes during immediate-effect studies. During both types of studies, VNS-induced CBF increases were similarly located in the bilateral thalami, hypothalami, inferior cerebellar hemispheres, and right postcentral gyrus. During immediate-effect studies, VNS decreased bilateral hippocampal, amygdalar, and cingulate CBF and increased bilateral insular CBF; no significant CBF changes were observed in these regions during prolonged studies. Mean seizure frequency decreased by 25% over a 3-month period between immediate and prolonged PET studies, compared with 3 months before VNS began. Conclusions: Seizure control improved during a period over which some immediate VNS-induced CBF changes declined (mainly over cortical regions), whereas other VNS-induced CBF changes persisted (mainly over subcortical regions). Altered synaptic activities at sites of persisting VNS-induced CBF changes may reflect antiseizure actions. [source]


    Differences in grey and white matter atrophy in amnestic mild cognitive impairment and mild Alzheimer's disease

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 4 2009
    M. L. F. Balthazar
    Background:, Grey matter (GM) atrophy has been demonstrated in amnestic mild cognitive impairment (aMCI) and mild Alzheimer's disease (AD), but the role of white matter (WM) atrophy has not been well characterized. Despite these findings, the validity of aMCI concept as prodromal AD has been questioned. Methods:, We performed brain MRI with voxel-based morphometry analysis in 48 subjects, aiming to evaluate the patterns of GM and WM atrophy amongst mild AD, aMCI and age-matched normal controls. Results:, Amnestic mild cognitive impairment GM atrophy was similarly distributed but less intense than that of mild AD group, mainly in thalami and parahippocampal gyri. There were no difference between aMCI and controls concerning WM atrophy. In the mild AD group, we found WM atrophy in periventricular areas, corpus callosum and WM adjacent to associative cortices. Discussion:, We demonstrated that aMCI might be considered a valid concept to detect very early AD pathology, since we found a close proximity in the pattern of atrophy. Also, we showed the involvement of WM in mild AD, but not in aMCI, suggesting a combination of Wallerian degeneration and microvascular ischaemic disease as a plausible additional pathological mechanism for the discrimination between MCI and AD. [source]


    Striatal infarcts mimicking frontotemporal dementia: a case report

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 4 2003
    Y. Nishio
    We described a patient with bilateral striatal infarcts, in whom stereotyped and disinhibited behaviors were insidiously emerged over 2 years mimicking frontotemporal dementia (FTD). A positron emission tomography with 18-fluorodeoxy glucose showed a hypometabolism in the frontal lobes, basal ganglia, and thalami. The peculiar behavioral alterations remained unchanged for the following 7 years, suggesting that the disease is not degenerative but of vascular origin. A disruption of the fronto-subcortical circuits at the level of the striatum or the anterior thalamic peduncle is attributable to the FTD-like behavioral and cognitive syndrome. [source]


    A multiparametric evaluation of regional brain damage in patients with primary progressive multiple sclerosis

    HUMAN BRAIN MAPPING, Issue 9 2009
    Antonia Ceccarelli
    Abstract The purpose of this study is to define the topographical distribution of gray matter (GM) and white matter (WM) damage in patients with primary progressive multiple sclerosis (PPMS), using a multiparametric MR-based approach. Using a 3 Tesla scanner, dual-echo, 3D fast-field echo (FFE), and diffusion tensor (DT) MRI scans were acquired from 18 PPMS patients and 17 matched healthy volunteers. An optimized voxel-based (VB) analysis was used to investigate the patterns of regional GM density changes and to quantify GM and WM diffusivity alterations of the entire brain. In PPMS patients, GM atrophy was found in the thalami and the right insula, while mean diffusivity (MD) changes involved several cortical-subcortical structures in all cerebral lobes and the cerebellum. An overlap between decreased WM fractional anisotropy (FA) and increased WM MD was found in the corpus callosum, the cingulate gyrus, the left short temporal fibers, the right short frontal fibers, the optic radiations, and the middle cerebellar peduncles. Selective MD increase, not associated with FA decrease, was found in the internal capsules, the corticospinal tracts, the superior longitudinal fasciculi, the fronto-occipital fasciculi, and the right cerebral peduncle. A discrepancy was found between regional WM diffusivity changes and focal lesions because several areas had DT MRI abnormalities but did not harbor T2-visible lesions. Our study allowed to detect tissue damage in brain areas associated with motor and cognitive functions, which are known to be impaired in PPMS patients. Combining regional measures derived from different MR modalities may be a valuable tool to improve our understanding of PPMS pathophysiology. Hum Brain Mapp 2009. © 2009 Wiley-Liss, Inc. [source]


    Primary CNS angiitis presenting as short-term memory loss: a case report and literature review

    INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, Issue 3 2008
    Bradley DUHON
    Abstract Primary angiitis of the central nervous system (PACNS) is an idiopathic vasculitis of the small to medium vessels that often eludes diagnosis because of its variable signs and symptoms. A 36-year-old woman presented with a 4-week history of progressive memory loss. Neurological examination revealed only severe cognitive deficits including anterograde amnesia. Magnetic resonance imaging demonstrated multiple ring-enhancing lesions involving the left frontal lobe and uncus and bilateral thalami. Stereotactic biopsy showed findings consistent with CNS angiitis. Further workup revealed no evidence of systemic disease. We report the first case of biopsy-proven PACNS presenting as profound isolated anterograde amnesia. [source]


    Voxel-Based Morphometry and Voxel-Based Relaxometry in Parkinsonian Variant of Multiple System Atrophy

    JOURNAL OF NEUROIMAGING, Issue 3 2010
    Loukia C. Tzarouchi MD
    ABSTRACT BACKGROUND AND PURPOSE Multiple system atrophy (MSA) is a progressive neurodegenerative disorder divided into a parkinsonian (MSA-P) and a cerebellar variant. The purpose of this study was to assess regional brain atrophy and iron content using Voxel-based morphometry (VBM) and Voxel-based relaxometry (VBR) respectively, in MSA-P. METHODS Using biological parametric mapping the effect of brain atrophy was evaluated in T2 relaxation time (T2) measurements by applying analysis of covariance (ANCOVA) and correlation analysis to the VBM and VBR data. Eleven patients with MSA-P (aged 61.9 ± 11.7 years, disease duration 5.42 ± 2.5 years) and 11 controls were studied. RESULTS In comparison to the controls the patients showed decreased gray matter in the putamen, the caudate nuclei, the thalami, the anterior cerebellar lobes, and the cerebral cortex, and white matter atrophy in the pons, midbrain, and peduncles. VBR analysis showed prolonged T2 in various cortical regions. On ANCOVA, when controlling for gray and white matter volume, these regions of prolonged T2 were shrunk. Negative correlation was demonstrated between T2 and gray and white matter volume. CONCLUSIONS Diffuse brain atrophy, mainly in the motor circuitry is observed in MSA-P. Normalization for atrophy should always be performed in T2 measurements. [source]


    Magnetic Resonance Imaging and Diffusion-Weighted Imaging Changes After Hypoglycemic Coma

    JOURNAL OF NEUROIMAGING, Issue 2 2005
    S. L. Jung
    ABSTRACT The authors report a case of severe hypoglycemic encephalopathy in an elderly patient. The magnetic resonance images showed bilateral cortical signal changes and basal ganglia lesions, which spared the thalami. The lesions were bright on fluid-attenuated inversion recovery and diffusion-weighted images and dark on the apparent diffusion coefficient map, being more conspicuous on the diffusion-weighted images than on the fluid-attenuated inversion recovery images. A literature review of the imaging features and pathophysiological mechanism in comparison with those of hypoxic ischemic injury is discussed. [source]


    The first Japanese patient with variant Creutzfeldt-Jakob disease (vCJD)

    NEUROPATHOLOGY, Issue 6 2009
    Akiyo Shinde
    Eleven years after a brief visit to some European countries, a 48-year-old Japanese man developed writing difficulty, irritability and general fatigue. Then he complained of dysesthetic pains in his legs, for which benzodiazepines were prescribed. However, at the time pulvinar sign was retrospectively confirmed on brain MRI. Eighteen months after the onset, his gait became ataxic with rapid deterioration of mental status over the following several months. Thirty-one months after the onset, he became akinetic and mute with periodic synchronous discharges on EEG, and died at the age of 51. The total clinical course was approximately 43 months. Pathological examination revealed the characteristic alterations of spongiform encephalopathy, severe in the thalamus, moderate but widely spread in the cerebral cortices, and moderate in the cerebellum. Abundant amyloid plaques were easily identified in the cerebral cortex and the cerebellum on HE staining. Immunohistochemistry for abnormal prion protein (PrPsc) confirmed amyloid plaques in several forms, such as florid, uni- and multi-centric plaques as well as perineuronal and periaxonal deposits in the basal ganglia and synaptic patterns in the thalami. A Western blotting study identified type 2B protease-resistant PrP. This is the first Japanese patient who was definitely diagnosed as variant Creutzfeldt-Jakob disease (vCJD). The pathological findings were similar to those of previous reports of vCJD in the UK. However, the changes were much more severe both in degree and distribution, probably due to a longer duration of the illness than those in the UK. [source]


    Neuroimaging advances in holoprosencephaly: Refining the spectrum of the midline malformation,

    AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 1 2010
    Jin S. Hahn
    Abstract Holoprosencephaly (HPE) is a complex congenital brain malformation characterized by failure of the forebrain to bifurcate into two hemispheres, a process normally completed by the fifth week of gestation. Modern high-resolution brain magnetic resonance imaging (MRI) has allowed detailed analysis of the cortical, white matter, and deep gray structural anomalies in HPE in living humans. This has led to better classification of types of HPE, identification of newer subtypes, and understanding of the pathogenesis. Currently, there are four generally accepted subtypes of HPE: alobar, semilobar, lobar, and middle interhemispheric variant. These subtypes are defined primarily by the degree and region of neocortical nonseparation. Rather than there being four discrete subtypes of HPE, we believe that there is a continuum of midline neocortical nonseparation resulting in a spectrum disorder. Many patients with HPE fall within the border zone between the neighboring subtypes. In addition, there are patients with very mild HPE, where the nonseparation is restricted to the preoptic (suprachiasmic) area. In addition to the neocortex, other midline structures such as the thalami, hypothalamic nuclei, and basal ganglia are often nonseparated in HPE. The cortical and subcortical involvements in HPE are thought to occur due to a disruption in the ventral patterning process during development. The severity of the abnormalities in these structures determines the severity of the neurodevelopmental outcome and associated sequelae. © 2010 Wiley-Liss, Inc. [source]


    Acute necrotizing encephalopathy during novel influenza A (H1N1) virus infection

    ANNALS OF NEUROLOGY, Issue 1 2010
    Paolo Mariotti MD
    A novel swine-origin influenza A (H1N1) virus was recently identified in Mexico. Some cases of infection with neurological complications have been reported to date. We report a case of acute necrotizing encephalopathy associated with the novel H1N1 virus in a 2-year-old European girl who suddenly developed fever, seizures, and altered mental status. Brain and spinal cord magnetic resonance imaging showed bilateral symmetrical lesions of the insulae, thalami, geniculate bodies, and pons tegmentum suggestive of an acute necrotizing encephalopathy. An involvement of meninges and spinal cord was observed configuring an acute necrotizing meningoencephalomyelitis. ANN NEUROL 2010;68:111,114 [source]


    Extrastriatal dopaminergic dysfunction in tourette syndrome

    ANNALS OF NEUROLOGY, Issue 2 2010
    Thomas D. L. Steeves MD
    Objective Tourette syndrome (TS) is a neuropsychiatric disorder presenting with tics and a constellation of nonmotor symptoms that includes attention deficit hyperactivity disorder, obsessive,compulsive disorder, and impulse control disorders. Accumulated evidence from pharmacological trials and postmortem analyses suggests that abnormalities of dopaminergic neurotransmission play a key role in the pathogenesis of TS. A substantial body of evidence has also accrued to implicate regions outside the striatum in the generation of tics. Methods We initiated an [11C]FLB 457 positron emission tomography study in conjunction with an amphetamine challenge to evaluate extrastriatal dopamine (DA) D2/D3 receptor binding and DA release in a group of treatment-naive, adult TS patients compared with a group of age- and sex-matched controls. Results At baseline, TS patients showed decreased [11C]FLB 457 binding potentials bilaterally in cortical and subcortical regions outside the striatum, including the cingulate gyrus, middle and superior temporal gyrus, occipital cortex, insula, and thalamus. Amphetamine challenge induced DA release in both control and TS subjects bilaterally in many cortical regions; however, in TS patients, regions of increased DA release were significantly more widespread and extended more anteriorly to involve anterior cingulate and medial frontal gyri. Conversely, and in contrast to healthy controls, no significant DA release was noted in the thalami of TS patients. Interpretation These abnormalities of dopaminergic function localize to brain regions previously implicated in TS and suggest a mechanism for the hyperexcitability of thalamocortical circuits that has been documented in the disorder. ANN NEUROL 2010;67:170,181 [source]


    Increased glutamate/glutamine compounds in the brains of patients with fibromyalgia: A magnetic resonance spectroscopy study

    ARTHRITIS & RHEUMATISM, Issue 6 2010
    Manuel Valdés
    Objective Fibromyalgia (FM) has been defined as a systemic disorder that is clinically characterized by pain, cognitive deficit, and the presence of associated psychopathology, all of which are suggestive of a primary brain dysfunction. This study was undertaken to identify the nature of this cerebral dysfunction by assessing the brain metabolite patterns in patients with FM through magnetic resonance spectroscopy (MRS) techniques. Methods A cohort of 28 female patients with FM and a control group of 24 healthy women of the same age were studied. MRS techniques were used to study brain metabolites in the amygdala, thalami, and prefrontal cortex of these women. Results In comparison with healthy controls, patients with FM showed higher levels of glutamate/glutamine (Glx) compounds (mean ± SD 11.9 ± 1.6 arbitrary units [AU] versus 13.4 ± 1.7 AU in controls and patients, respectively; t = 2.517, 35 df, corrected P = 0.03) and a higher Glx:creatine ratio (mean ± SD 2.1 ± 0.4 versus 2.4 ± 1.4, respectively; t = 2.373, 35 df, corrected P = 0.04) in the right amygdala. In FM patients with increased levels of pain intensity, greater fatigue, and more symptoms of depression, inositol levels in the right amygdala and right thalamus were significantly higher. Conclusion The distinctive metabolic features found in the right amygdala of patients with FM suggest the possible existence of a neural dysfunction in emotional processing. The results appear to extend previous findings regarding the dysfunction in pain processing observed in patients with FM. [source]


    Correlation of neurological manifestations and MR images in a patient with Wilson's disease after liver transplantation

    ACTA NEUROLOGICA SCANDINAVICA, Issue 2 2000
    J-C. Wu
    Orthotopic liver transplantation (OLT) has been applied to patients with Wilson's disease (WD) for correction of irreversible liver cirrhosis. However, the neurological outcome and the correlation between clinical manifestations and neuroimage findings after OLT remain uncertain. We present a WD patient who showed an improvement in both liver functions and neurological manifestations after OLT. Serum levels of ceruloplasmin and copper returned to normal rapidly after the operation. His ataxic gait was improved 5 months later and dysmetria and tremor disappeared 11 months later. The high signal intensities on T2-weighted brain magnetic resonance images regressed at bilateral thalami 5 months later and disappeared in bilateral thalami and red nuclei 16 months after OLT. We conclude that the neurological improvement could be expected in WD patients after OLT. The improvement was correlated with the MRI changes in red nuclei and bilateral thalami. [source]


    Physiological functions of glucose-inhibited neurones

    ACTA PHYSIOLOGICA, Issue 1 2009
    D. Burdakov
    Abstract Glucose-inhibited neurones are an integral part of neurocircuits regulating cognitive arousal, body weight and vital adaptive behaviours. Their firing is directly suppressed by extracellular glucose through poorly understood signalling cascades culminating in opening of post-synaptic K+ or possibly Cl, channels. In mammalian brains, two groups of glucose-inhibited neurones are best understood at present: neurones of the hypothalamic arcuate nucleus (ARC) that express peptide transmitters NPY and agouti-related peptide (AgRP) and neurones of the lateral hypothalamus (LH) that express peptide transmitters orexins/hypocretins. The activity of ARC NPY/AgRP neurones promotes food intake and suppresses energy expenditure, and their destruction causes a severe reduction in food intake and body weight. The physiological actions of ARC NPY/AgRP cells are mediated by projections to numerous hypothalamic areas, as well as extrahypothalamic sites such as the thalamus and ventral tegmental area. Orexin/hypocretin neurones of the LH are critical for normal wakefulness, energy expenditure and reward-seeking, and their destruction causes narcolepsy. Orexin actions are mediated by highly widespread central projections to virtually all brain areas except the cerebellum, including monosynaptic innervation of the cerebral cortex and autonomic pre-ganglionic neurones. There, orexins act on two specific G-protein-coupled receptors generally linked to neuronal excitation. In addition to sensing physiological changes in sugar levels, the firing of both NPY/AgRP and orexin neurones is inhibited by the ,satiety' hormone leptin and stimulated by the ,hunger' hormone ghrelin. Glucose-inhibited neurones are thus well placed to coordinate diverse brain states and behaviours based on energy levels. [source]


    Neuroanatomy and neurophysiology of itch

    DERMATOLOGIC THERAPY, Issue 4 2005
    Joanna Wallengren
    ABSTRACT:, The specific pathway of "pure," histaminergic itch is traced from the mechano-insensitive nerve fibers in the skin to their central cortical projections. Neuropathic itch created at different levels of this anatomical pathway is reviewed. In this review the present author discusses damage to pruritoceptors in the skin, entrapment syndromes, damage to spinal ganglia, nerve root impingement, injury of the spinal cord, and cerebral damage in the distribution of the middle cerebral artery, capsula interna, or thalamus. Itch in inflamed skin resulting from interactions between nerve transmitters and other mediators of inflammation is described. [source]


    Schizophrenia; from structure to function with special focus on the mediodorsal thalamic prefrontal loop

    ACTA PSYCHIATRICA SCANDINAVICA, Issue 5 2009
    B. Pakkenberg
    Objective:, To describe structural and biochemical evidence from postmortem brains that implicates the reciprocal connections between the mediodorsal thalamic nucleus and the prefrontal cortex in cognitive symptoms of schizophrenia. Method:, The estimation of the regional volumes and cell numbers was obtained using stereological methods. The biochemical analyses of molecular expression in postmortem brain involve quantitative measurement of transcripts and proteins by in-situ (RNA) or Western blot/autoradiography in brains from patients with schizophrenia and comparison subjects. Results:, Stereological studies in postmortem brain from patients with schizophrenia have reported divergent and often opposing findings in the total number of neurons and volume of the mediodorsal (MD) thalamic nucleus, and to a lesser degree in its reciprocally associated areas of the prefrontal cortex. Similarly, quantitative molecular postmortem studies have found large inter-subject and between-study variance at both the transcript and protein levels for receptors and their interacting molecules of several neurotransmitter systems in these interconnected anatomical regions. Combined, large variation in stereological and molecular studies indicates a complex and heterogeneous involvement of the MD thalamic-prefrontal loop in schizophrenia. Conclusion:, Based on a considerable heterogeneity in patients suffering from schizophrenia, large variation in postmortem studies, including stereological and molecular postmortem studies of the MD thalamus and frontal cortex, might be expected and may in fact partly help to explain the variable endophenotypic traits associated with this severe psychiatric illness. [source]


    The neuroanatomy and neuroendocrinology of fragile X syndrome

    DEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 1 2004
    David Hessl
    Abstract Fragile X syndrome (FXS), caused by a single gene mutation on the X chromosome, offers a unique opportunity for investigation of gene,brain,behavior relationships. Recent advances in molecular genetics, human brain imaging, and behavioral studies have started to unravel the complex pathways leading to the cognitive, psychiatric, and physical features that are unique to this syndrome. In this article, we summarize studies focused on the neuroanatomy and neuroendocrinology of FXS. A review of structural imaging studies of individuals with the full mutation shows that several brain regions are enlarged, including the hippocampus, amygdala, caudate nucleus, and thalamus, even after controlling for overall brain volume. These regions mediate several cognitive and behavioral functions known to be aberrant in FXS such as memory and learning, information and sensory processing, and social and emotional behavior. Two regions, the cerebellar vermis, important for a variety of cognitive tasks and regulation of motor behavior, and the superior temporal gyrus, involved in processing complex auditory stimuli, are reported to be reduced in size relative to controls. Functional imaging, typically limited to females, has emphasized that individuals with FXS do not adequately recruit brain regions that are normally utilized by unaffected individuals to carry out various cognitive tasks, such as arithmetic processing or visual memory tasks. Finally, we review a number of neuroendocrine studies implicating hypothalamic dysfunction in FXS, including abnormal activation of the hypothalamic,pituitary,adrenal (HPA) axis. These studies may help to explain the abnormal stress responses, sleep abnormalities, and physical growth patterns commonly seen in affected individuals. In the future, innovative longitudinal studies to investigate development of neurobiologic and behavioral features over time, and ultimately empirical testing of pharmacological, behavioral, and even molecular genetic interventions using MRI are likely to yield significant positive changes in the lives of persons with FXS, as well as increase our understanding of the development of psychiatric and learning problems in the general population. MRDD Research Reviews 2004;10:17,24. © 2004 Wiley-Liss, Inc. [source]


    Zic4, a zinc-finger transcription factor, is expressed in the developing mouse nervous system

    DEVELOPMENTAL DYNAMICS, Issue 3 2005
    Carles Gaston-Massuet
    Abstract Zic genes comprise a family of transcription factors, characterized by the presence of a zinc-finger domain containing two cysteines and two histidines (C2-H2). Whereas the embryonic expression patterns of Zic1, 2, 3, and 5 have been described in detail, Zic4 has not yet received close attention. We studied the expression of Zic4 by in situ hybridization during mouse embryogenesis. Zic4 mRNA was first detected at low intensity at embryonic day (E) 9 and, by E10.5, expression was up-regulated in the dorsal midline of the forebrain with a strong, expanded expression domain at the boundary between the diencephalon and telencephalon, the septum, and the lamina terminalis. The choroid plexus of the third ventricle expresses Zic4, as does the dorsal part of the spinal neural tube, excluding the roof plate. The dorsal sclerotome and the dorsomedial lip of the dermomyotome also express Zic4 whereas dorsal root ganglia are negative. At E12.5, Zic4 continues to be expressed in the midline of the forebrain and in the dorsal spinal neural tube. Postnatally, Zic4 is expressed in the granule cells of the postnatal day 2 cerebellum, and in the periventricular thalamus and anterior end of the superior colliculus. We conclude that Zic4 has an expression pattern distinct from, but partly overlapping with, other members of the Zic gene family. Developmental Dynamics 233:1110,1115, 2005. © 2005 Wiley-Liss, Inc. [source]


    Zinc finger gene fez - like functions in the formation of subplate neurons and thalamocortical axons

    DEVELOPMENTAL DYNAMICS, Issue 3 2004
    Tustomu Hirata
    Abstract fez - like (fezl) is a forebrain-expressed zinc finger gene required for the formation of the hypothalamic dopaminergic and serotonergic (monoaminergic) neurons in zebrafish. To reveal its function in mammals, we analyzed the expression of the mouse orthologue of fezl and generated fezl -deficient mice by homologous recombination. Mouse fezl was expressed specifically in the forebrain from embryonic day 8.5. At mid-gestation, fezl expression was detected in subdomains of the forebrain, including the dorsal telencephalon and ventral diencephalon. Unlike the zebrafish fezl mutant too few, the fezl -deficient mice displayed normal development of hypothalamic monoaminergic neurons, but showed abnormal "hyperactive" behavior. In fezl,/, mice, the thalamocortical axons (TCA) were reduced in number and aberrantly projected to the cortex. These mutants had a reduced number of subplate neurons, which are involved in guiding the TCA from the dorsal thalamus, although the subplate neurons were born normally. These results suggest that fezl is required for differentiation or survival of the subplate neurons, and reduction of the subplate neurons in fezl -deficient mice leads to abnormal development of the TCA, providing a possible link between the transcriptional regulation of forebrain development and hyperactive behavior. Developmental Dynamics 230:546,556, 2004. © 2004 Wiley-Liss, Inc. [source]


    Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study

    DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 1 2002
    Elizabeth R Sowell PhD
    The purpose of the present study was to describe in greater anatomical detail the changes in brain structure that occur during maturation between childhood and adolescence. High-resolution MRI, tissue classification, and anatomical segmentation of cortical and subcortical regions were used in a sample of 35 normally developing children and adolescents between 7 and 16 years of age (mean age 11 years; 20 males, 15 females). Each cortical and subcortical measure was examined for age and sex effects on raw volumes and on the measures as proportions of total supratentorial cranial volume. Results indicate age-related increases in total supratentorial cranial volume and raw and proportional increases in total cerebral white matter. Gray-matter volume reductions were only observed once variance in total brain size was proportionally controlled. The change in total cerebral white-matter proportion was significantly greater than the change in total cerebral gray-matter proportion over this age range, suggesting that the relative gray-matter reduction is probably due to significant increases in white matter. Total raw cerebral CSF volume increases were also observed. Within the cerebrum, regional patterns varied depending on the tissue (or CSF) assessed. Only frontal and parietal cortices showed changes in gray matter, white matter, and CSF measures. Once the approximately 7% larger brain volume in males was controlled, only mesial temporal cortex, caudate, thalamus, and basomesial diencephalic structures showed sex effects with the females having greater relative volumes in these regions than the males. Overall, these results are consistent with earlier reports and describe in greater detail the regional pattern of age-related differences in gray and white matter in normally developing children and adolescents. [source]


    Acquired aphasia in children after surgical resection of left-thalamic tumors

    DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 9 2000
    Ruth Nass MD
    Five children (three males, two females; four right-, one left-handed; age range 6 to 14 years) who developed aphasia after gross-total excision of left predominantly thalamic tumors are reported. Three patients had Broca aphasia, one had mixed transcortical aphasia, and one patient had conduction aphasia. In the months after surgery, three children improved while receiving radiation and/or chemotherapy, although none recovered completely. Two patients with malignant tumors developed worsening aphasia when the tumor recurred, and later died. Two of three patients tested had visuospatial difficulties in addition to language deficits. Attention and executive functioning were affected in three of three patients tested. Memory, verbal and/or visual functioning, were affected in four of four patients tested. Both patients who were tested showed transient right hemineglect. Two of two patients tested were probably apraxic. The wide range of deficits in these children highlights the importance of the thalamus and other subcortical structures in developing cognition. [source]


    Cooperative activity of multiple upper layer proteins for thalamocortical axon growth

    DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2008
    Takuro Maruyama
    Abstract During development, sensory thalamocortical (TC) axons grow into the neocortex and terminate primarily in layer 4. To study the molecular mechanism that underlies lamina-specific TC axon termination, we investigated the responsiveness of TC axons to ephrin-A5, semaphorin-7A (Sema7A) and kit ligand (KL), which are expressed in the upper layers of the developing cortex. Dissociated cells of the dorsal thalamus from embryonic rat brain were cultured on dishes that were coated with preclustered Fc-tagged extracellular domains of these molecules. Each protein was found to promote TC axon growth in a dose-dependent fashion of a bell-shaped curve. Any combination of the three proteins showed a cooperative effect in lower concentrations but not in higher concentrations, suggesting that their growth-promoting activities act in a common pathway. The effect of spatial distributions of these proteins was further tested on a filter membrane, in which these proteins were printed at a size that recapitulates the scale of laminar thickness in vivo, using a novel protein-printing technique, Simple-To-mAke Micropore Protein-Printing (STAMP2) method. The results demonstrated that TC axons grew massively on the laminin-coated region but were prevented from invading the adjacent ephrin-A5-printed region, suggesting that TC axons detect relative differences in the growth effect between these regions. Moreover, the inhibitory action of ephrin-A5 was enhanced by copresence with KL and Sema7A. Together, these results suggest that the lamina-specific TC axon targeting mechanism involves growth-inhibitory activity by multiple molecules in the upper layers and detection in the molecular environments between the upper and deep layers. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source]


    DC electrical stimulation of the pretectal thalamus and its effects on the feeding behavior of the toad (Bufo bufo)

    DEVELOPMENTAL NEUROBIOLOGY, Issue 7 2007
    James McConville
    Abstract The feeding motivation of the common European common toad (Bufo bufo) can be quantified by the feeding sequence of arousal-orientation-approach-fixate-snap. Previous work has found that the optic tectum is an important structure responsible for the mediation of feeding behaviors, and combined electrical and visual stimulation of the optic tectum was found to increase the animals feeding behaviors. However, the pretectal thalamus has an inhibitory influence upon the optic tectum and its lesion results in disinhibited feeding behaviors. This suggests that feeding behavior of anurans is also subject to influence from the pretectal thalamus. Previous studies involving the application of DC stimulation to brain tissue has generated slow potential shifts and these shifts have been implicated in the modulation of the neural mechanisms associated with behavior. The current study investigated the application of DC stimulation to the diencephalon surface dorsal to the lateral posterodorsal pretectal thalamic nucleus in Bufo bufo, in order to assess effects on feeding motivation. The application of DC stimulation increased the incidence of avoidance behaviors to a visual prey stimulus while reducing the prey catching behavior component of approach, suggesting that the DC current applied to the pretectum increased the inhibition upon the feeding elements of the optic tectum. This can be explained by the generation of slow potential shifts. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source]


    Eyeblink conditioning using cochlear nucleus stimulation as a conditioned stimulus in developing rats

    DEVELOPMENTAL PSYCHOBIOLOGY, Issue 7 2008
    John H. Freeman
    Abstract Previous studies demonstrated that the development of auditory conditioned stimulus (CS) input to the cerebellum may be a neural mechanism underlying the ontogenetic emergence of eyeblink conditioning in rats. The current study investigated the role of developmental changes in the projections of the cochlear nucleus (CN) in the ontogeny of eyeblink conditioning using electrical stimulation of the CN as a CS. Rat pups were implanted with a bipolar stimulating electrode in the CN and given six 100-trial training sessions with a 300 ms stimulation train in the CN paired with a 10 ms periorbital shock unconditioned stimulus (US) on postnatal days (P) 17,18 or 24,25. Control groups were given unpaired presentations of the CS and US. Rats in both age groups that received paired training showed significant increases in eyeblink conditioned responses across training relative to the unpaired groups. The rats trained on P24,25, however, showed stronger conditioning relative to the group trained on P17,18. Rats with missed electrodes in the inferior cerebellar peduncle or in the cerebellar cortex did not show conditioning. The findings suggest that developmental changes in the CN projections to the pons, inferior colliculus, or medial auditory thalamus may be a neural mechanism underlying the ontogeny of auditory eyeblink conditioning. © 2008 Wiley Periodicals, Inc. Dev Psychobiol 50: 640-646, 2008. [source]


    Involvement of the thalamocortical network in TLE with and without mesiotemporal sclerosis

    EPILEPSIA, Issue 8 2010
    Susanne G. Mueller
    Summary Purpose:, The thalamus plays an important role in seizure propagation in temporal lobe epilepsy (TLE). This study investigated how structural abnormalities in the focus, ipsilateral thalamus and extrafocal cortical structures relate to each other in TLE with mesiotemporal sclerosis (TLE-MTS) and without hippocampal sclerosis (TLE-no). Methods:, T1 and high-resolution T2 images were acquired on a 4T magnet in 29 controls, 15 TLE-MTS cases, and 14 TLE-no. Thalamus volumes were obtained by warping a labeled atlas onto each subject's brain. Deformation-based morphometry was used to identify regions of thalamic volume loss and FreeSurfer for cortical thickness measurements. CA1 volumes were obtained from high-resolution T2 images. Multiple regression analysis and correlation analyses for voxel- and vertex-based analyses were performed in SPM2 and FreeSurfer. Results:, TLE-MTS had bilateral volume loss in the anterior thalamus, which was correlated with CA1 volume and cortical thinning in the mesiotemporal lobe. TLE-no had less severe volume loss in the dorsal lateral nucleus, which was correlated with thinning in the mesiotemporal region but not with extratemporal thinning. Discussion:, The findings suggest that seizure propagation from the presumed epileptogenic focus or regions close to it into the thalamus occurs in TLE-MTS and TLE-no and results in circumscribed neuronal loss in the thalamus. However, seizure spread beyond the thalamus seems not to be responsible for the extensive extratemporal cortical abnormalities in TLE. [source]


    Voxel-based morphometry of sporadic epileptic patients with mesiotemporal sclerosis

    EPILEPSIA, Issue 4 2010
    Angelo Labate
    Summary Purpose:, In refractory temporal lobe epilepsy (rTLE), gray matter (GM) abnormalities are not confined to the hippocampus but also are found in extrahippocampal structures. Very recently we observed in mild TLE (mTLE) with or without mesiotemporal sclerosis (MTS), GM reductions in regions outside the presumed epileptogenic focus. To date, there are no studies that directly investigate whether whole-brain GM volume differs between rTLE and mTLE. Herein, we used optimized voxel-based morphometry (VBM) to identify GM abnormalities beyond the hippocampus in both rTLE and mTLE with evidence of MTS. Methods:, Brain magnetic resonance imaging (MRI) and optimized VBM were performed in 19 unrelated patients with mTLE, 19 patients with rTLE, and 37 healthy controls. MRI diagnosis of MTS was based on the atrophy of the hippocampal formation and/or mesiotemporal hyperintensity on fluid-attenuated inversion recovery (FLAIR) or T2 images, or both. Results:, No patients (rTLE and mTLE) had generalized tonic,clonic or complex partial seizures for at least 3 weeks before scanning. Both mTLE and rTLE patients showed GM volume reduction of the bilateral thalamus, left hippocampus, and sensorimotor cortex compared with controls. No significant GM difference was found between rTLE and mTLE groups. Discussion:, In both rTLE and mTLE, VBM shows GM reductions not confined to the hippocampus involving mainly the thalamus bilaterally. This finding together with the lack of significant GM differences between the two TLE groups supports the hypothesis that mTLE and rTLE might lie along a biologic continuum, suggesting a pathophysiologic role of the thalamus in partial epilepsy. [source]