Test Probes (test + probe)

Distribution by Scientific Domains


Selected Abstracts


An alignment-free methodology for modelling field-based 3D-structure activity relationships using inductive logic programming

JOURNAL OF CHEMOMETRICS, Issue 12 2007
Bård Buttingsrud
Abstract Traditional 3D-quantitative structure,activity relationship (QSAR)/structure,activity relationship (SAR) methodologies are sensitive to the quality of an alignment step which is required to make molecular structures comparable. Even though many methods have been proposed to solve this problem, they often result in a loss of model interpretability. The requirement of alignment is a restriction imposed by traditional regression methods due to their failure to represent relations between data objects directly. Inductive logic programming (ILP) is a class of machine-learning methods able to describe relational data directly. We propose a new methodology which is aimed at using the richness in molecular interaction fields (MIFs) without being restricted by any alignment procedure. A set of MIFs is computed and further compressed by finding their minima corresponding to the sites of strongest interaction between a molecule and the applied test probe. ILP uses these minima to build easily interpretable rules about activity expressed as pharmacophore rules in the powerful language of first-order logic. We use a set of previously published inhibitors of factor Xa of the benzamidine family to discuss the problems, requirements and advantages of the new methodology. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Determination of genomic copy number with quantitative microsphere hybridization,,

HUMAN MUTATION, Issue 4 2006
Heather L. Newkirk
Abstract We developed a novel quantitative microsphere suspension hybridization (QMH) assay for determination of genomic copy number by flow cytometry. Single copy (sc) products ranging in length from 62 to 2,304 nucleotides [Rogan et al., 2001; Knoll and Rogan, 2004] from ABL1 (chromosome 9q34), TEKT3 (17p12), PMP22 (17p12), and HOXB1 (17q21) were conjugated to spectrally distinct polystyrene microspheres. These conjugated probes were used in multiplex hybridization to detect homologous target sequences in biotinylated genomic DNA extracted from fixed cell pellets obtained for cytogenetic studies. Hybridized targets were bound to phycoerythrin-labeled streptavidin; then the spectral emissions of both target and conjugated microsphere were codetected by flow cytometry. Prior amplification of locus-specific target DNA was not required because sc probes provide adequate specificity and sensitivity for accurate copy number determination. Copy number differences were distinguishable by comparing the mean fluorescence intensities (MFI) of test probes with a biallelic reference probe in genomic DNA of patient samples and abnormal cell lines. Concerted 5, ABL1 deletions in patient samples with a chromosome 9;22 translocation and chronic myelogenous leukemia were confirmed by comparison of the mean fluorescence intensities of ABL1 test probes with a HOXB1 reference probe. The relative intensities of the ABL1 probes were reduced to 0.59±0.02 &!ndash;fold in three different deletion patients and increased 1.42±0.01 &!ndash;fold in three trisomic 9 cell lines. TEKT3 and PMP22 probes detected proportionate copy number increases in five patients with Charcot-Marie-Tooth Type 1a disease and chromosome 17p12 duplications. Thus, the assay is capable of distinguishing one allele and three alleles from a biallelic reference sequence, regardless of chromosomal context. Hum Mutat 27(4), 376,386, 2006. © 2006 Wiley-Liss, Inc. [source]


Influence of stationary phase chemistry and mobile-phase composition on retention, selectivity, and MS response in hydrophilic interaction chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 6-7 2010
Kenneth J. Fountain
Abstract A comprehensive retention and selectivity characterization of several hydrophilic interaction chromatography (HILIC) stationary phases was performed with 28 test probes in order to study the influence of particle type, surface chemistry, and mobile-phase pH on chromatographic retention, selectivity, and MS response. Selectivity differences were compared for columns operated at both low and high pH, while ESI-MS was used to study the effects of mobile-phase pH on signal response. Additionally, acetone was explored as a potential alternative to ACN as the weak HILIC solvent. Moderate differences in selectivity were observed on the same column operated at different pH, mostly due to acidic compounds. In addition, the MS response increased when a high pH mobile phase was used, particularly for analytes that were ionized with negative ESI-MS. Even larger selectivity differences were observed for different stationary phases evaluated with the same mobile phase. Acetone was not a suitable replacement for ACN in routine HILIC separations due to differences in selectivity and MS response. Finally, the data from this study were used to establish guidelines for rapid HILIC method development of polar compounds, which is demonstrated with a mixture of histidine dipeptides and organophosphonate nerve agent metabolites. [source]