Tensor Images (tensor + image)

Distribution by Scientific Domains

Kinds of Tensor Images

  • diffusion tensor image


  • Selected Abstracts


    3D diffusion tensor MRI with isotropic resolution using a steady-state radial acquisition

    JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 5 2009
    Youngkyoo Jung PhD
    Abstract Purpose To obtain diffusion tensor images (DTI) over a large image volume rapidly with 3D isotropic spatial resolution, minimal spatial distortions, and reduced motion artifacts, a diffusion-weighted steady-state 3D projection (SS 3DPR) pulse sequence was developed. Materials and Methods A diffusion gradient was inserted in a SS 3DPR pulse sequence. The acquisition was synchronized to the cardiac cycle, linear phase errors were corrected along the readout direction, and each projection was weighted by measures of consistency with other data. A new iterative parallel imaging reconstruction method was also implemented for removing off-resonance and undersampling artifacts simultaneously. Results The contrast and appearance of both the fractional anisotropy and eigenvector color maps were substantially improved after all correction techniques were applied. True 3D DTI datasets were obtained in vivo over the whole brain (240 mm field of view in all directions) with 1.87 mm isotropic spatial resolution, six diffusion encoding directions in under 19 minutes. Conclusion A true 3D DTI pulse sequence with high isotropic spatial resolution was developed for whole brain imaging in under 20 minutes. To minimize the effects of brain motion, a cardiac synchronized, multiecho, DW-SSFP pulse sequence was implemented. Motion artifacts were further reduced by a combination of linear phase correction, corrupt projection detection and rejection, sampling density reweighting, and parallel imaging reconstruction. The combination of these methods greatly improved the quality of 3D DTI in the brain. J. Magn. Reson. Imaging 2009;29:1175,1184. © 2009 Wiley-Liss, Inc. [source]


    Cardiac diffusion MRI without motion effects

    MAGNETIC RESONANCE IN MEDICINE, Issue 1 2002
    Jiangang Dou
    Abstract We present a method for diffusion tensor MRI in the beating heart that is insensitive to cardiac motion and strain. Using a stimulated echo pulse sequence with two electrocardiogram (ECG) triggers, diffusion-encoding bipolar gradient pulses are applied at identical phases in consecutive cardiac cycles. In this experiment, diffusion is encoded at a single phase in the cardiac cycle of less than 30 ms in duration. This encoding produces no phase shifts for periodic motion and is independent of intervening strains. Studies in a gel phantom with cyclic deformation confirm that by using this sequence we can map the diffusion tensor free of effects of cyclic motion. In normal human subjects, myocardial diffusion eigenvalues measured with the present method showed no significant change between acquisitions encoded at maximum contractile velocity (peak) vs. at myocardial standstill (end-systole), demonstrating motion independence of in vivo diffusion measurements. Diffusion tensor images acquired with the present method agree with registered data acquired with a previous cardiac diffusion MRI method that was shown to be valid in the normal heart, strongly supporting the validity of MRI diffusion measurement in the beating heart. Myocardial sheet and fiber dynamics measured during systole showed that normal human myocardial sheet orientations tilt toward the radial during systole, and fiber orientations tilt toward the longitudinal, in qualitative agreement with previous invasive studies in canines. These results demonstrate the technique's ability to measure myocardial diffusion accurately at any point in the cardiac cycle free of measurable motion effect, as if the heart were frozen at the point of acquisition. Magn Reson Med 48:105,114, 2002. © 2002 Wiley-Liss, Inc. [source]


    Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases , a review

    NMR IN BIOMEDICINE, Issue 7-8 2002
    Mark A. Horsfield
    Abstract This paper reviews the current applications of diffusion-weighted and diffusion tensor MRI in diseases of the brain white matter. The contribution that diffusion-weighted imaging has made to our understanding of white matter diseases is critically appraised. The quantitative nature of diffusion MRI is one of its major attractions; however, this is offset by the more advanced hardware required to collect diffusion-weighted images reliably, and the more complex processing to produce quantitative parametric diffusion images. With the now common availability of scanners equipped to perform echo-planar imaging, the acquisition of diffusion tensor images is sure to become more widespread and routine. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    A disconnection account of Gerstmann syndrome: Functional neuroanatomy evidence,

    ANNALS OF NEUROLOGY, Issue 5 2009
    Elena Rusconi PhD
    Objective To examine the functional neuroanatomy that could account for pure Gerstmann syndrome, which is the selective association of acalculia, finger agnosia, left-right disorientation, and agraphia. Methods We used structural and functional neuroimaging at high spatial resolution in healthy subjects to seek a shared cortical substrate of the Grundstörung posited by Gerstmann, ie, a common functional denominator accounting for this clinical tetrad. We construed a functional activation paradigm that mirrors each of the four clinical deficits in Gerstmann syndrome and determined cortical activation patterns. We then applied fiber tracking to diffusion tensor images and used cortical activation foci in the four functional domains as seed regions. Results None of the subjects showed parietal overlap of cortical activation patterns from the four cognitive domains. In every subject, however, the parietal activation patterns across all four domains consistently connected to a small region of subcortical parietal white matter at a location that is congruent with the lesion in a well-documented case of pure Gerstmann syndrome. Interpretation Our functional neuroimaging findings are not in agreement with Gerstmann's postulate of damage to a common cognitive function underpinning clinical semiology. Our evidence from intact functional neuroanatomy suggests that pure forms of Gerstmann's tetrad do not arise from lesion to a shared cortical substrate but from intraparietal disconnection after damage to a focal region of subcortical white matter. Ann Neurol 2009;66:654,662 [source]