Tensile Elongation (tensile + elongation)

Distribution by Scientific Domains

Selected Abstracts

Effect of Ultrasonication on the Microstructure and Tensile Elongation of Zirconia-Dispersed Alumina Ceramics Prepared by Colloidal Processing

Tohru S. Suzuki
To obtain dense, fine-grained ceramics, fine particles and advanced powder processing, such as colloidal processing, are needed. Al2O3 and ZrO2 particles are dispersed in colloidal suspensions by electrosteric repulsion because of polyelectrolyte absorbed on their surfaces. However, additional redispersion treatment such as ultrasonication is required to obtain dispersed suspensions because fine particles tend to agglomerate. The results demonstrate that ultrasonication is effective in improving particle dispersion in suspensions and producing a homogeneous fine microstructure of sintered materials. Superplastic tensile ductility is improved by ultrasonication in preparing suspensions because of the dense and homogeneous fine microstructure. [source]

Thermo-mechanical methods for improving fatigue performance of wrought magnesium alloys

ABSTRACT Wrought magnesium alloys AZ80 and ZK60 were extruded at 300 C with extrusion ratios of ER = 12 and 44. Resulting microstructures, crystallographic textures and mechanical properties were investigated. Extruding led to profound reduction in grain size, which drastically improved yield stress, tensile elongation and HCF performance. Strength differentials in ZK60 after extruding at ER = 12 were more pronounced than after extruding at ER = 44, whereas no such effect of ER was observed in AZ80. Swaging after extruding further increased yield stress and endurance limit, while strength differential increased and ductility was lowered. [source]

Surface Modification of Poly(propylene) Microporous Membrane to Improve Its Antifouling Characteristics in an SMBR: O2 Plasma Treatment

Hai-Yin Yu
Abstract Fouling is the major obstacle in membrane processes applied in water and wastewater treatment. To improve the antifouling characteristics of PPHFMMs in an SMBR for wastewater treatment, the PPHFMMs were surface-modified by O2 low temperature plasma treatment. Structural and morphological changes on the membrane surface were characterized by XPS and FE-SEM. The change of surface wettability was monitored by contact angle measurements. Results of XPS clearly indicated that the plasma treatment introduced oxygen containing polar groups on the membrane surface. The static water contact angle of the modified membrane reduced obviously with the increase of plasma treatment time. The relative pure water flux for the modified membranes increased with plasma treatment time up to 1 min, then it decreased with further increase of plasma treatment time. Decreases in the tensile strength and the tensile elongation at break of the modified membranes were also observed. To assess the relation between the plasma treatment and the membrane fouling in an SMBR, filtration for activated sludge was carried out by using synthetic wastewater. After continuous operation in the SMBR for about 75 h, flux recovery were 8.7 and 12.3%, reduction of flux were 91.6 and 87.4% for the nascent and O2 plasma treated PPHFMM for 1 min, relative flux ratio for O2 plasma treated PPHFMM for 1 min was 49.9% higher than that of the nascent PPHFMM. [source]

Compatibilizing effect of ethylene,propylene,diene grafted maleic anhydride terpolymer on the blend of polyamide 66 and thermal liquid crystalline polymer

Qunfeng Yue
Polyamide 66,thermal liquid crystalline polymer (PA66/TLCP) composites containing 10 wt% TLCP was compatibilized by ethylene,propylene,diene-grafted maleic anhydride terpolymer (MAH- g -EPDM). The blending was performed on a twin-screw extrusion, followed by an injection molding. The rheological, dynamic mechanical analysis (DMA), thermal, mechanical properties, as well as the morphology and FTIR spectra, of the blends were investigated and discussed. Rheological, DMA, and FTIR spectra results showed that MAH- g -EPDM is an effective compatibilizer for PA66/TLCP blends. The mechanical test indicated that the tensile strength, tensile elongation, and the bending strength of the blends were improved with the increase of the content of MAH- g -EPDM, which implied that the blends probably have a great frictional shear force, resulting from strong adhesion at the interface between the matrix and the dispersion phase; while the bending modulus was weakened with the increase of MAH- g -EPDM content, which is attributed to the development of the crystalline phase of PA66 hampered by adding MAH- g -EPDM. POLYM. COMPOS., 27:608,613, 2006. 2006 Society of Plastics Engineers [source]

Thermal, mechanical, and diffusional properties of nylon 6/ABS polymer blends: Compatibilizer effect

Seung Phil Jang
The thermal, mechanical, and water absorption properties of blends of nylon 6 (PA6) and acrylonitrile-butadiene-styrene copolymer (ABS) with and without the compatibilizer maleic anhydride (MAH) were studied. Polymers were melt-blended using a twin screw extruder, and injection molded into sheets. Tensile and impact properties, hardness, heat deflection resistance, and dimensional stability were enhanced by the incorporation of MAH. Synergistic effects were observed for tensile elongation and flexural properties. The melting temperature and the thermal stability were not significantly affected by the incorporation of MAH. The mechanical property enhancement by the introduction of compatibilizer was explained by the formation of a micro-domain structure in the blends. The equilibrium water uptake increased with increasing concentration of PA6, and the diffusion coefficient was determined from the water transport kinetics at different temperatures. Activation energy was extracted from the temperature dependence of the diffusion coefficient. No compatibilizer effect was observed in the swelling behavior. [source]