Tectonic Zone (tectonic + zone)

Distribution by Scientific Domains


Selected Abstracts


Origin and geochemistry of Miocene marine evaporites associated with red beds: Great Kavir Basin, Central Iran

GEOLOGICAL JOURNAL, Issue 1 2007
Hossain Rahimpour-Bonab
Abstract During the Cenozoic numerous shallow epicontinental evaporite basins formed due to tectonic movements in the Northern Province of the Central Iran Tectonic Zone (the Great Kavir Basin). During the Miocene, due to sea-level fluctuations, thick sequences of evaporites and carbonates accumulated in these basins that subsequently were overlain by continental red beds. Development of halite evaporites with substantial thickness in this area implies inflow of seawater along the narrow continental rift axis. The early ocean basin development was initiated in Early Eocene time and continued up to the Middle Miocene in the isolated failed rift arms. Competition between marine and non-marine environments, at the edge of the encroaching sea, produced several sequences of both abrupt and gradual transition from continental wadi sediments to marginal marine evaporites in the studied area. These evaporites show well-preserved textures indicative of relatively shallow-brine pools. The high Br content of these evaporites indicates marine-derived parent brines that were under the sporadic influence of freshening by meteoric water or replenishing seawater. However, the association of hopper and cornet textures denotes stratified brine that filled a relatively large pool and prevented rapid variations in the Br profile. Unstable basin conditions that triggered modification of parent brine chemistry prevailed in this basin and caused variable distribution patterns for different elements in the chloride units. The presence of sylvite and the absence of Mg-sulphate/chlorides in the paragenetic sequence indicate SO4,depleted parent brine in the studied sequence. Petrographic examinations along with geochemical analyses on these potash-bearing halites reveal parental brines which were a mixture of seawater and CaCl2 -rich brines. The source of CaCl2 -rich brines is ascribed to the presence of local rift systems in the Great Kavir Basin up to the end of the Early Miocene. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Structure of Sumatra and its implications for the tectonic assembly of Southeast Asia and the destruction of Paleotethys

ISLAND ARC, Issue 1 2009
Anthony J. Barber
Abstract It is now generally accepted that Southeast Asia is composed of continental blocks which separated from Gondwana with the formation of oceanic crust during the Paleozoic, and were accreted to Asia in the Late Paleozoic or Early Mesozoic, with the subduction of the intervening oceanic crust. From east to west the Malay peninsula and Sumatra are composed of three continental blocks: East Malaya with a Cathaysian Permian flora and fauna; Sibumasu, including the western part of the Malay peninsula and East Sumatra, with Late Carboniferous,Early Permian ,pebbly mudstones' interpreted as glaciogenic diamictites; and West Sumatra, again with Cathaysian fauna and flora. A further unit, the Woyla nappe, is interpreted as an intraoceanic arc thrust over the West Sumatra block in the mid Cretaceous. There are varied opinions concerning the age of collision of Sibumasu with East Malaya and the destruction of Paleotethys. In Thailand, radiolarites have been used as evidence that Paleotethys survived until after the Middle Triassic. In the Malay peninsula, structural evidence and the ages of granitic intrusions are used to support a Middle Permian to Early Triassic age for the destruction of Paleotethys. It is suggested that the West Sumatra block was derived from Cathaysia and emplaced against the western margin of Sibumasu by dextral transcurrent faulting along a zone of high deformation, the Medial Sumatra Tectonic Zone. These structural units can be traced northwards in Southeast Asia. The East Malaya block is considered to be part of the Indochina block, Sibumasu can be traced through Thailand into southern China, the Medial Sumatra Tectonic Zone is correlated with the Mogok Belt of Myanmar, the West Burma block is the extension of the West Sumatra block, from which it was separated by the formation of the Andaman Sea in the Miocene, and the Woyla nappe is correlated with the Mawgyi nappe of Myanmar. [source]


Stress behavior from fault data sets within a transtensional zone, South Central Cordillera, Luzon, Philippines: Implications for mineral occurrences

ISLAND ARC, Issue 1 2009
Mario A. Aurelio
Abstract The structural signature in the area between the Baguio mineral district and Ansagan, Tuba, Benguet in the South Central Cordillera, northern Luzon, Philippines, is dominated by northeast- to ENE-trending faults, contained within a NNW,SSE-trending transtensional strip. This 50-km-long, 25-km-wide elongated tectonic zone is bounded to the west by the Pugo Fault and to the east by the Tebbo Fault, both being branches of the Philippine Fault System. Detailed structural geological (particularly microtectonic) analysis of fracture and mineral vein systems indicates strong conformity with the regional structural direction. Computed extensional stress axis ,3 directions are oriented N150° on average, sub-parallel to the strike of the bounding faults. The existence of known mineral deposits and prospects within the tectonic strip implies an intimate relationship between transtension and mineral occurrence. [source]


Formation of eclogite, and reaction during exhumation to mid-crustal levels, Snowbird tectonic zone, western Canadian Shield

JOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2007
J. A. BALDWIN
Abstract A re-evaluation of the P,T history of eclogite within the East Athabasca granulite terrane of the Snowbird tectonic zone, northern Saskatchewan, Canada was undertaken. Using calculated pseudosections in combination with new garnet,clinopyroxene and zircon and rutile trace element thermometry, peak metamorphic conditions are constrained to ,16 kbar and 750 °C, followed by near-isothermal decompression to ,10 kbar. Associated with the eclogite are two types of occurrences of sapphirine-bearing rocks preserving a rich variety of reaction textures that allow examination of the retrograde history below 10 kbar. The first occurs as a 1,2 m zone adjacent to the eclogite body with a peak assemblage of garnet,kyanite,quartz interpreted to have formed during the eclogite facies metamorphism. Rims of orthopyroxene and plagioclase developed around garnet, and sapphirine,plagioclase and spinel,plagioclase symplectites developed around kyanite. The second variety of sapphirine-bearing rocks occurs in kyanite veins within the eclogite. The veins involve orthopyroxene, garnet and plagioclase layers spatially organized around a central kyanite layer that are interpreted to have formed following the eclogite facies metamorphism. The layering has itself been modified, with, in particular, kyanite being replaced by sapphirine,plagioclase, spinel,plagioclase and corundum,plagioclase symplectites, as well as the kyanite being replaced by sillimanite. Petrological modelling in the CFMAS system examining chemical potential gradients between kyanite and surrounding quartz indicates that these vein textures probably formed during further essentially isothermal decompression, ultimately reaching ,7 kbar and 750 °C. These results indicate that the final reaction in these rocks occurred at mid-crustal levels at upper amphibolite facies conditions. Previous geochronological and thermochronological constraints bracket the time interval of decompression to <5,10 Myr, indicating that ,25 km of exhumation took place during this interval. This corresponds to minimum unroofing rates of ,2,5 mm year,1 following eclogite facies metamorphism, after which the rocks resided at mid-crustal levels for 80,100 Myr. [source]


Hydrology and water resources in monsoon Asia: a consideration of the necessity of establishing a standing research community of hydrology and water resources in the Asia Pacific region

HYDROLOGICAL PROCESSES, Issue 14 2003
Katumi Musiake
Abstract Hydrological and water resources issues appear very differently in different regions, and are strongly affected by geographical conditions. Hydrological knowledge and methodologies obtained in a specific region cannot necessarily be adapted to other regions. The purpose of this paper is to clarify one way to address adequately the regional characteristics of hydrology and water resources in monsoon Asia, especially the ,too much water' problems in the region. For this purpose, geomorphological factors, climatic factors and human intervention in the natural environment are taken into consideration as the three major factors governing the regional characteristics of the hydrology,water resources system. To identify geomorphological features macroscopically between the Asia Pacific region and other continental regions, the concepts ,tectonic zone' and ,stable region', which are two major subdivisions of continental masses in the world, are introduced. Also, a new climatic subdivision termed ,warm-humid' is proposed to express the abundant precipitation due to the Asian monsoon. Then, hydrological characteristics common or similar in ,warm-humid tectonic zones' in the Asia Pacific region, contrasted with those in stable regions, are enumerated together with the human intervention corresponding to these characteristics, and research targets peculiar to warm-humid tectonic zones are discussed. Finally, the establishment of a standing research community called ,Asia Pacific Association of Hydrology and Water Resources' is proposed to promote the exchange of operational knowledge and experience in water resources management, cooperative research activities, and professional education in the Asia Pacific region. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Gravity evidence for a larger Limpopo Belt in southern Africa and geodynamic implications

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2002
R. T. Ranganai
Summary The Limpopo Belt of southern Africa is a Neoarchean orogenic belt located between two older Archean provinces, the Zimbabwe craton to the north and the Kaapvaal craton to the south. Previous studies considered the Limpopo Belt to be a linearly trending east-northeast belt with a width of ,250 km and ,600 km long. We provide evidence from gravity data constrained by seismic and geochronologic data suggesting that the Limpopo Belt is much larger than previously assumed and includes the Shashe Belt in Botswana, thus defining a southward convex orogenic arc sandwiched between the two cratons. The 2 Ga Magondi orogenic belt truncates the Limpopo,Shahse Belt to the west. The northern marginal, central and southern marginal tectonic zones define a single gravity anomaly on upward continued maps, indicating that they had the same exhumation history. This interpretation requires a tectonic model involving convergence between the Kaapvaal and Zimbabwe cratons during a Neoarchean orogeny that preserved the thick cratonic keel that has been imaged in tomographic models. [source]


Hydrology and water resources in monsoon Asia: a consideration of the necessity of establishing a standing research community of hydrology and water resources in the Asia Pacific region

HYDROLOGICAL PROCESSES, Issue 14 2003
Katumi Musiake
Abstract Hydrological and water resources issues appear very differently in different regions, and are strongly affected by geographical conditions. Hydrological knowledge and methodologies obtained in a specific region cannot necessarily be adapted to other regions. The purpose of this paper is to clarify one way to address adequately the regional characteristics of hydrology and water resources in monsoon Asia, especially the ,too much water' problems in the region. For this purpose, geomorphological factors, climatic factors and human intervention in the natural environment are taken into consideration as the three major factors governing the regional characteristics of the hydrology,water resources system. To identify geomorphological features macroscopically between the Asia Pacific region and other continental regions, the concepts ,tectonic zone' and ,stable region', which are two major subdivisions of continental masses in the world, are introduced. Also, a new climatic subdivision termed ,warm-humid' is proposed to express the abundant precipitation due to the Asian monsoon. Then, hydrological characteristics common or similar in ,warm-humid tectonic zones' in the Asia Pacific region, contrasted with those in stable regions, are enumerated together with the human intervention corresponding to these characteristics, and research targets peculiar to warm-humid tectonic zones are discussed. Finally, the establishment of a standing research community called ,Asia Pacific Association of Hydrology and Water Resources' is proposed to promote the exchange of operational knowledge and experience in water resources management, cooperative research activities, and professional education in the Asia Pacific region. Copyright © 2003 John Wiley & Sons, Ltd. [source]