Home About us Contact | |||
Tectonic Units (tectonic + unit)
Selected AbstractsTectonic deformation of the Indochina Peninsula recorded in the Mesozoic palaeomagnetic resultsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2009Kazuhiro Takemoto SUMMARY In order to describe features of tectonic deformation in the Indochina Peninsula, Early Jurassic to Early Cretaceous red sandstones were sampled at three localities in the Shan-Thai and Indochina blocks. Stepwise thermal treatment of most samples revealed the presence of characteristic remanent magnetization, which is generally unblocked by 680 °C. This component from Phong Saly (21.6°N, 101.9°E) and Borikhanxay (18.5°N, 103.8°E) localities yield positive fold tests with Late Jurassic,Early Cretaceous directions of Dec/Inc = 28.8°/32.1° (ks= 15.4, ,95= 8.8°, N= 22) and Dec/Inc = 42.1°/46.9° (ks= 20.1, ,95= 7.9°, N= 18), respectively. Additionally, a syn-folding mid-Cretaceous characteristic magnetization is observed in the samples of Muang Phin locality (16.5°N, 106.1°E), which gave a mean direction of Dec/Inc = 30.8°/39.9°, k= 102.6, ,95= 3.0°, N= 23. This reliable Late Jurassic to Mid-Cretaceous palaeomagnetic directions from three different localities are incorporated into a palaeomagnetic database for Shan-Thai and Indochina blocks. Based on these compilations, tectonic deformation of the Shan-Thai and Indochina blocks is summarized as follows: (1) the Shan-Thai and Indochina blocks experienced a clockwise rotation of about 10° as a composite unit in the early stage of India,Asia collision and (2) following this, the Shan-Thai Block underwent an internal tectonic deformation, whereas the Indochina Block behaved as a rigid tectonic unit during the same period. Comparison of our palaeomagnetic results with seismic tomographic images suggests that the strength of continental lithosphere beneath these blocks played an important role in the process of deformation rather than any other tectonic regime. In contrast to the Shan-Thai Block, an existence of continental roots beneath the Indochina Block prevented its internal deformation. [source] Monazite geochronology in central New England: evidence for a fundamental terrane boundaryJOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2008F. S. SPEAR Abstract Monazite crystallization ages have been measured in situ using SIMS and EMP analysis of samples from the Bronson Hill anticlinorium in central New England. In west-central New Hampshire, each major tectonic unit (nappe) displays a distinctive P,T path and metamorphic history that requires significant post-metamorphic faulting to place them in their current juxtaposition, and monazite ages were determined to constrain the timing of metamorphism and nappe assembly. Monazite ages from the low-pressure, high-temperature Fall Mountain nappe range from c. 455 to 355 Ma, and Y zoning indicates that these ages comprise three to four distinct age domains, similar to that found in the overlying Chesham Pond nappe. The underlying Skitchewaug nappe contains monazite ages that range from c. 417 to 307 Ma. 40Ar/39Ar ages indicate rapid cooling of the Chesham Pond and Fall Mountain nappes after 350 Ma, which is believed to represent the time of emplacement of the high-level Chesham Pond and Fall Mountain nappes onto rocks of the underlying Skitchewaug nappe. Garnet zone rocks from western New Hampshire contain monazite that display a range of ages (c. 430,340 Ma). Both the metamorphic style and monazite ages suggest that the low-grade belt in western New Hampshire is continuous with the Vermont sequence to the west. Rocks of the Big Staurolite nappe in western New Hampshire contain monazite that crystallized between c. 370 and 290 Ma and the same unit along strike in northern New Hampshire and central Connecticut records ages of c. 257,300 Ma. Conspicuously absent from this nappe are the older age populations that are found in both the overlying nappes and underlying garnet zone rocks. These monazite ages confirm that the metamorphism observed in the Big Staurolite nappe occurred significantly later than that in the units structurally above and below. These data support the hypothesis that the Big Staurolite nappe represents a major tectonic boundary, along which rocks of the New Hampshire metamorphic series were juxtaposed against rocks of the Vermont series during the Alleghanian. [source] Mantle Branch Structure in the South-Central Segment of the Da Hinggan Mts., Inner Mongolia and Its Ore-controlling RoleACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009NIU Shuyin Abstract: Mantle branch structure is the third tectonic unit of multiple evolution of a mantle branch. It is not only the main mechanism of intercontinental orogeny, but also an important ore-forming and ore-control structure. Studies on geotectonic evolution, regional geological characteristics and oreforming and ore-control structures have shown that since the Mesozoic the Da Hinggan Mts. region has entered a typical intercontinental orogenic stage, and it is closely related to mantle branch activities. The south-central segment of the Da Hinggan Mts. is a typical mantle branch structure and possesses obvious magmatic-metamorphic complexes in the core, detachment slip beds in the periphery and overlapped fault depression basins. Moreover, all of these are the principal factors leading to ore formation and ore control in the region. This paper also further explores the mechanism of mineralization in the south-central segment of the Da Hinggan, summaries the rules of mineralization, puts forward the models of mineralization and points out future ore-exploring orientation. [source] Ophiolite-bearing mélanges in southern ItalyGEOLOGICAL JOURNAL, Issue 2 2009Luigi Tortorici Abstract In southern Italy two ophiolite-bearing belts, respectively involved in the Adria-verging southern Apennines and in the Europe-verging thrust belt of the northern Calabrian Arc, represent the southward extension of the northern Apennines and of ,Alpine Corsica' ophiolitic units, respectively. They form two distinct suture zones, which are characterized by different age of emplacement and opposite sense of tectonic transport. The ophiolite-bearing units of the southern Apennines are represented by broken formation and tectonic mélange associated with remnants of a well-developed accretionary wedge emplaced on top of the Adria continental margin, with an overall NE direction of tectonic transport. These units consist of a Cretaceous-Oligocene matrix, which includes blocks of continental-type rocks and ophiolites with remnants of their original Upper Jurassic to Lower Cretaceous pelagic cover. The innermost portion of the accretionary wedge is represented by a polymetamorphosed and polydeformed tectonic units that underwent a Late Oligocene high pressure/low temperature (HP/LT) metamorphism. The northern Calabria ophiolitic-belt is indeed composed of west-verging tectonic slices of oceanic rocks which, embedded between platform carbonate units of a western continental margin at the bottom and the basement crystalline nappes of the Calabrian Arc at the top, are affected by a Late Eocene-Early Oligocene HP/LT metamorphism. The main tectonic features of these two suture zones suggest that they can be interpreted as the result of the closure of two branches of the western Neotethys separated by a continental block that includes the crystalline basement rocks of the Calabrian Arc. We thus suggest that the north-east verging southern Apennine suture constituted by a well-developed accretionary wedge is the result of the closure of a large Late Jurassic-Early Cretaceous oceanic domain (the Ligurian Ocean) located between the African (the Adria Block) and European continental margins. The northern Calabria suture derives indeed from the deformation of a very narrow oceanic-floored basin developed during the Mesozoic rifting stages within the European margin separating a small continental ribbon (Calabrian Block) from the main continent. Copyright © 2008 John Wiley & Sons, Ltd. [source] High-pressure mineral assemblage in granitic rocks from continental units, Alpine Corsica, FranceGEOLOGICAL JOURNAL, Issue 1 2006Alessandro Malasoma Abstract The Popolasca,Francardo area of northern Corsica contains an assemblage of continental tectonic units affected by an Alpine deformation. In one of these units, Unit II, previously regarded as weakly metamorphosed, a metamorphic mineral assemblage characterized by sodic amphibole, phengite, quartz, albite and epidote has been found in an aplite dyke that cuts the dominant granitoids. Peak-metamorphic temperature and pressure conditions of 300,370°C and 0.50,0.80,GPa, respectively, have been determined. This finding indicates that a continuous belt of continental slices, characterized by high-pressure, low-temperature metamorphism of Tertiary age, extends from the Tenda Massif in the north to the Corte area in the south, thus placing additional constraints on the tectonic evolution of Alpine Corsica. Copyright © 2005 John Wiley & Sons, Ltd. [source] Triassic metasedimentary successions across the boundary between the southern Apennines and the Calabrian Arc (northern Calabria, Italy)GEOLOGICAL JOURNAL, Issue 2 2005A. Iannace Abstract The boundary area between the Apenninic fold-and-thrust belt and the crystalline Calabrian Arc, located around Sangineto in northern Calabria, has been investigated. New geological mapping in the Sant'Agata area has been performed on the Triassic successions traditionally attributed to the metasedimentary San Donato Unit. This, coupled with a reappraisal of the stratigraphy and tectonics of coeval successions present more to the south in the Cetraro Unit, results in a new reconstruction of the Triassic evolution of all the metasedimentary successions found in the region. Four informal stratigraphic units have been distinguished in the S. Agata area. The lowest one (Unit A) consists of well-bedded metalimestones and bioturbated marly limestones that correlate with Ladinian,Carnian carbonates in nearby areas. A second unit (Unit B), never recognized before, contains a complex alternation of dolomites, phyllites and some meta-arenites containing several beds of Cavernoso facies, attributed to the Carnian. They grade upward to platform and platform-margin dolomites of Norian,Rhaetian age (Unit C) that in turn are replaced upward and laterally by a fourth unit (Unit D) consisting of well-bedded, dark dolomites and metalimestones with marly interlayers locally found as resedimented large blocks in slope conglomerates. Unit D correlates with Rhaetian,Liassic beds in nearby areas. Several pieces of evidence of post-metamorphic contractional tectonics, with 140°N and 30°N trends, are found together with evidence of SW-directed extension. The siliciclastic Carnian beds of Unit B are correlated with the phyllites of Cetraro, formerly believed to be Middle Triassic; moreover, it is suggested that in the Cetraro area Unit C is almost totally replaced by Unit D. This demonstrates that the former distinction between the two tectonic units in the whole area has to be discarded. We have made a general palaeoenvironmental reconstruction which progresses laterally, during Ladinian,Carnian times, from (i) a coastal, mixed siliciclastic,carbonate,evaporitic area at Cetraro to (ii) a transitional carbonate shelf where siliciclastic input was only episodic, and finally to (iii) a bioconstructed margin which was later replaced by a steepened margin created by tectonic instability. Starting from the Norian, subsidence shifted toward the former coastal area where an intraplatform, restricted basin developed. The proposed stratigraphy corresponds closely to the Alpujarride units of the Betic Cordillera, Spain. Moreover, it is shown that strong affinities also exist, in terms of the structural framework, with the metamorphic units of Tuscany and Liguria. Copyright © 2005 John Wiley & Sons, Ltd. [source] Relics of the Mozambique Ocean in the central East African Orogen: evidence from the Vohibory Block of southern MadagascarJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2008N. JÖNS Abstract The Vohibory Block of south-western Madagascar is part of the East African Orogen, the formation of which is related to the assembly of the Gondwana supercontinent. It is dominated by metabasic rocks, which have chemical compositions similar to those of recent basalts from a mid-ocean ridge, back-arc setting and island-arc setting. The age of formation of protolith basalts has been dated at 850,700 Ma by U,Pb SHRIMP analysis of magmatic cores in zircon, pointing to an origin related to the Neoproterozoic Mozambique Ocean. The metabasic rocks are interpreted as representing components of an island arc with an associated back-arc basin. In the early stage of the Pan-African orogeny, these rocks experienced high-pressure amphibolite to granulite facies metamorphism (9,12 kbar, 750,880 °C), dated at 612 ± 5 Ma from metamorphic rims in zircon. The metamorphism was most likely related to accretion of the arc terrane to the margin of the Azania microcontinent (Proto-Madagascar) and closure of the back-arc basin. The main metamorphism is significantly older than high-temperature metamorphism in other tectonic units of southern Madagascar, indicating a distinct tectono-metamorphic history. [source] Petrology and P,T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China cratonJOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2000G. C. Zhao The Fuping Complex and the adjoining Wutai and Hengshan Complexes are located in the central zone of the North China craton. The dominant rock types in the Fuping Complex are high-grade tonalitic,trondhjemitic,granodioritic (TTG) gneisses, with minor amounts of mafic granulites, syntectonic granitic rocks and supracrustal rocks. The petrological evidence from the mafic granulites indicates three stages of metamorphic evolution. The M1 stage is represented by garnet porphyroblasts and matrix plagioclase, quartz, orthopyroxene, clinopyroxene and hornblende. Orthopyroxene+plagioclase symplectites and clinopyroxene+plagioclase±orthopyroxene coronas formed in response to decompression during M2 following the peak metamorphism at M1. Hornblende+plagioclase symplectites formed as a result of further isobaric cooling and retrograde metamorphism during M3. The P,T estimates using TWQ thermobarometry are: 900,950 °C and 8.0,8.5 kbar for the peak assemblage (M1), based on the core compositions of garnet, matrix pyroxene and plagioclase; 700,800 °C and 6.0,7.0 kbar for the pyroxene+plagioclase symplectites or coronas (M2); and 550,650 °C and 5.3,6.3 kbar for the hornblende+plagioclase symplectites (M3), based on garnet rim and corresponding symplectic mineral compositions. These P,T estimates define a clockwise P,T path involving near-isothermal decompression for the Fuping Complex, similar to the P,T path estimated for the metapelitic gneisses. The inferred P,T path suggests that the Fuping Complex underwent initial crustal thickening, subsequent exhumation, and finally cooling and retrogression. This tectonothermal path is similar to P,T paths inferred for the Wutai and Hengshan Complexes and other tectonic units in the central zone of the North China craton, but different from anti-clockwise P,T paths estimated for the basement rocks in the eastern and western zones of the craton. Based on lithological, structural, metamorphic and geochronological data, the eastern and western zones of the craton are considered to represent two different Archean to Paleoproterozoic continental blocks that amalgamated along the central zone at the end of Paleoproterozoic. The P,T paths of the Fuping Complex and other tectonic units in the central zone record the collision between the eastern and western zones that led to the final assembly of the North China craton at c. 1800 Ma. [source] Crustal Composition of China Continent Constrained from Heat Flow Data and Helium Isotope Ratio of Underground FluidACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010Yang WANG Abstract: Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 ,W/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58,1.12 ,W/m3 with a median of 0.85 ,W/m3. Accordingly, the contents of U, Th and K2O in China crust are in ranges of 0.83,1.76 ,g/g, 3.16,6.69 ,g/g, and 1.0%,2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China's continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust. [source] The Significance of Crust Structure and Continental Dynamics Inferred from Receiver Functions in West YunnanACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009HE Chuansong Abstract: In our study we collected the teleseismic record of 31 broadband stations and 9 PASSCAL stations in West Yunnan, as well as extracted more than a million receiver functions. Using the waveform model and stacking techniques, we calculated the earth crust thicknesses and Vp/Vs ratios below the stations and obtained 35 valid data points. At the same time, we evenly stacked the receiver functions at the same station and superimposed the two profiles' cross sections of the main tectonic units. The results show a clear difference between the crust thicknesses of different tectonic units. Because of the magma underplatting and delimanition of the lower crust in the role of deep process, the West Yunnan's crust can be divided two kinds,mafic-ultramafic and feldspathic crusts. The research also shows that the mafic-ultramafic crust corresponds to a good background of mineralization. The delamination of the lower crust is one of the leading causes for moderate to strong earthquake prone in central Yunnan. The thinner crust and high velocity ratio as well as the multimodal structure of Ps in the Tengchong volcanic area confirms existence of a deep process of the strong magma underplating. Due to the basic crust structure and nature, it is believed that the Honghe fault is a main suture of the Gondwana and Eurasia continents. [source] |